In order to realize cost-effective semiconductor gas sensors, the authors have studied the feasibility of replacing platinum by tungsten for the metallic layer of heaters in a moderate temperature range (25–400 °C). Tungsten films were deposited on silicon substrates by direct current magnetron sputtering in argon gas. The deposition of tungsten films was investigated at various working gas pressures to modify the microstructure. The results have shown that low-stressed films showed a good adhesion to silicon substrates. Resistivity values as low as 27 μΩ cm were obtained for 600 nm films deposited at low argon pressure. After a thermal treatment at 500 °C for 30 min., no resistivity variation occurred for films deposited at low argon pressure. Finally, three different structures of tungsten heaters were elaborated by using an optical lithography technique and tested for 300 h at 400 °C.

1.
D.
Fasquelle
,
International Innovation on Sensible Sensors
(
2014
), pp.
106
108
.
2.
D.
Fasquelle
,
S.
Députier
,
M.
Mascot
,
N.
Uschanoff
,
V.
Bouquet
,
V.
Demange
,
M.
Guilloux-Viry
, and
J.-C.
Carru
, Adv. Mater. Res.
789
,
105
(
2013
).
3.
M.
Debliquy
, “
Capteurs de gaz à semi-conducteurs
,” Techniques de l'ingénieur No. R 2, p.
385
,
2006
.
4.
C.
Wang
,
L.
Yin
,
L.
Zhang
,
D.
Xiang
, and
R.
Gao
,
Sensors
10
,
2088
(
2010
).
5.
C.
Hood
,
Platinum Met. Rev.
20
,
48
(
1976
).
6.
M.
Xu
,
G.
Slovin
,
J.
Paramesh
,
T. E.
Schlesinger
, and
J.
Bain
,
Rev. Sci. Instrum.
87
,
2
(
2016
).
7.
S. Z.
Ali
,
F.
Udrea
,
W. I.
Milne
, and
J. W.
Gardner
,
J. Microelectromech. Syst.
17
,
6
(
2009
).
8.
A.
Masood
,
M.
Pantouvaki
,
D.
Goossens
,
G.
Lepage
,
P.
Verheyen
,
J.
Van Campenhout
,
P.
Absil
,
D.
Van Thourhout
, and
W.
Bogaerts
,
Opt. Mater. Express
4
,
1383
(
2014
).
9.
Nasdaq, “
Platinum: Latest price and chart for platinum
,” http://www.nasdaq.com/markets/platinum.aspx.
10.
“Goodfellow,” http://www.goodfellow.com.
11.
S. M.
Rossnagel
and
J. J.
Cuomo
,
Thin Solid Films
171
,
143
(
1989
).
12.
H.
Windirschmann
,
J. Appl. Phys.
62
,
1800
(
1987
).
13.
J. A.
Thornton
,
J. Vac. Sci. Technol., A
4
,
6
(
1986
).
14.
T. J.
Vink
,
W.
Walrave
,
J. L. C.
Daams
,
A. G.
Dirks
,
M. A. J.
Somers
, and
K. J. A.
Van den Aker
,
J. Appl. Phys.
74
,
2
(
1993
).
15.
S. M.
Rossnagel
,
I. C.
Noyan
, and
J. C.
Cabral
,
J. Vac. Sci. Technol., B
20
,
2047
(
2002
).
16.
D.
Choi
 et al,
J. Vac. Sci. Technol., A
29
,
051512
(
2011
).
17.
I. P.
Ivanov
,
I.
Sen
, and
P.
Keswick
,
J. Vac. Sci. Technol., B
24
,
523
(
2006
).
18.
M. J. O
'Keefe
and
J. T.
Grant
,
J. Appl. Phys.
79
,
9134
(
1996
).
19.
M. J.
O'Keefe
and
S. E.
Stutz
,
Mater. Res. Soc. Symp. Proc.
472
,
233
(
1997
).
20.
D. C.
Meyer
,
A.
Klingner
,
Th.
Holz
, and
P.
Paufler
,
Appl. Phys. A
69
,
657
(
1999
).
21.
D. L.
Windt
,
J. Vac. Sci. Technol., B
17
,
1385
(
1999
).
22.
E.
Vassallo
,
R.
Caniello
,
M.
Canetti
,
D.
Dellasega
, and
M.
Passoni
,
Thin Solid Films
558
,
89
(
2014
).
23.
T.
Karabacak
,
J. J.
Senkevich
,
G. C.
Wang
, and
T. M.
Lu
,
J. Vac. Sci. Technol., A
23
,
4
(
2005
).
24.
I. C.
Noyan
,
T. M.
Shaw
, and
C. C.
Goldsmith
,
J. Appl. Phys.
82
,
9
(
1997
).
25.
JCPDS-ICDD Powder Diffraction File-2, Card 4–806, 1994.
You do not currently have access to this content.