Uniform periodic structure formation over a large sample area has been challenging in laser interference lithography (LIL) mainly due to the Gaussian intensity distribution inherent to a laser beam. In this work, refractive beam shaping devices are applied in a Lloyd's interferometer to create a flat-top light field (2.8% intensity variation over an area of 20 × 20 cm2) for wafer-scale nanopatterning. Around 10−2 variation in fill factors are obtained for all the reported one dimensional and two dimensional periodic structures across a 2-in. wafer, which is 1 order of magnitude lower than the values obtained for the samples exposed to a Gaussian light field. The proposed LIL system also allows gradual light field transitions from the Gaussian, super-Gaussian, and flat-top to the inverse-Gaussian by simply adjusting the spot size of the laser incident to the beam shaper. The authors believe that the proposed LIL system can be applied for a variety of applications that benefit from the nature of periodic nanostructures.

1.
E.
Ertorer
,
F.
Vasefi
,
J.
Keshwah
,
M.
Najiminaini
,
C.
Halfpap
,
U.
Langbein
,
J. J. L.
Carson
,
D. W.
Hamilton
, and
S.
Mittler
,
J. Biomed. Opt.
18
,
035002
(
2013
).
2.
I.
Wathuthanthri
,
W.
Mao
, and
C.-H.
Choi
,
Opt. Lett.
36
,
1593
(
2011
).
3.
Y.-J.
Hung
,
S.-L.
Lee
,
Y.-T.
Pan
,
B. J.
Thibeault
, and
L. A.
Coldren
,
J. Vac. Sci. Technol., B
28
,
1030
(
2010
).
4.
Y.-J.
Hung
,
P.-C.
Chang
,
Y.-N.
Lin
, and
J.-J.
Lin
,
J. Vac. Sci. Technol., B
34
,
040609
(
2016
).
5.
T. B.
O'Reilly
and
H. I.
Smith
,
J. Vac. Sci. Technol., B
26
,
2131
(
2008
).
6.
W.
Mao
,
I.
Wathuthanthri
, and
C.-H.
Choi
,
Opt. Lett.
36
,
3176
(
2011
).
7.
Y.-K.
Yang
,
Y.-X.
Wu
,
T.-H.
Lin
,
C.-W.
Yu
, and
C.-C.
Fu
,
Proc. SPIE
9736
,
97360
Y (
2016
).
8.
F.
Duerr
and
H.
Thienpont
,
Opt. Express
22
,
8001
(
2014
).
9.
B. R.
Frieden
,
Appl. Opt.
4
,
1400
(
1965
).
10.
J. A.
Hoffnagle
and
C. M.
Jefferson
,
Appl. Opt.
39
,
5488
(
2000
).
11.
A.
Laskin
,
V.
Laskin
, and
A.
Ostrun
,
Proc. SPIE
9200
,
92000E
(
2014
).
12.
J. W.
Goodman
,
Introduction to Fourier Optics
(
McGraw-Hill
,
New York
,
1996
).
13.
M.
Born
and
E.
Wolf
,
Principles of Optics
(
Cambridge University
,
Cambridge
,
1999
).
14.
W. J.
Smith
,
Modern Optical Engineering
(
McGraw-Hill
,
New York
,
2000
).
15.
D. J.
Kim
,
W. G.
Oldham
, and
A. R.
Neureuther
,
IEEE Trans. Electron Devices
31
,
1730
(
1984
).
16.
B.
de
,
A.
Mello
,
I. F.
da Costa
,
C. R. A.
Lima
, and
L.
Cescato
,
Appl. Opt.
34
,
597
(
1995
).
17.
A. S.
Kewitsch
and
A.
Yariv
,
Appl. Phys. Lett.
68
,
455
(
1996
).
18.
H.
Kim
,
H.
Jung
,
D.-H.
Lee
,
K. B.
Lee
, and
H.
Jeon
,
Appl. Opt.
55
,
354
(
2016
).
19.
K.
Liu
,
H.
Xu
,
H.
Hu
,
Q.
Gan
, and
A. N.
Cartwright
,
Adv. Mater.
24
,
1604
(
2012
).
20.
H.-J.
Chang
,
P.-C.
Chang
, and
Y.-J.
Hung
,
Proceedings of the Conference on Lasers and Electro-Optics (CLEO)
,
San Jose, CA
(
2016
), Paper No. SM2R.7.
21.
N. D.
Lai
,
J. H.
Lin
,
Y. Y.
Huang
, and
C. C.
Hsu
,
Opt. Express
14
,
10746
(
2006
).
22.
I.
Bita
,
T.
Choi
,
M. E.
Walsh
,
H. I.
Smith
, and
E. L.
Thomas
,
Adv. Mater.
19
,
1403
(
2007
).
You do not currently have access to this content.