Achromatic Talbot lithography has been proved as a robust and high throughput technique for large area nanopatterning with controllable feature sizes and duty cycles. In this work, the influence of symmetry and duty cycles on the pattern generation has been investigated in detail. Compared with square lattice case, no lattice rotation and spatial frequency multiplication can be observed in hexagonal nanopattern generation. Uniform pattern distribution with a 20 nm feature size has been obtained in square and hexagonal lattices by the masks with 144 nm period and ∼50% duty cycle. For the exposure of mask with a smaller duty cycle, nonuniform dot size distribution has been obtained in the square lattice. While, by using a smaller duty cycle hexagonal lattice mask, a highly uniform periodic hexagonal nanopattern with a 10% duty cycle has been obtained. All the experimental results were consistent with the simulation work.

1.
N.
Anttu
and
H. Q.
Xu
,
J. Nanosci. Nanotechnol.
10
,
7183
(
2010
).
2.
M.
Ye
 et al.,
J. Alloy Compd.
621
,
244
(
2015
).
3.
P. P.
Zhang
,
S. M.
Yang
,
L. S.
Wang
,
J.
Zhao
,
Z. C.
Zhu
,
B.
Liu
,
J.
Zhong
, and
X. H.
Sun
,
Nanotechnology
25
,
245301
(
2014
).
4.
A.
Tavakkoli
,
K. G. S. N.
Piramanayagam
,
M.
Ranjbar
,
R.
Sbiaa
, and
T. C.
Chong
,
J. Vac. Sci. Technol., B
29
,
011035
(
2011
).
6.
S. R. J.
Brueck
,
Proc. IEEE
93
,
1704
(
2005
).
7.
J. W.
Jeong
,
W. I.
Park
,
M. J.
Kim
,
C. A.
Ross
, and
Y. S.
Jung
,
Nano Lett.
11
,
4095
(
2011
).
8.
H. H.
Solak
,
J. Phys. D: Appl. Phys.
39
,
R171
(
2006
).
9.
S. M.
Yang
,
L. S.
Wang
,
J.
Zhao
,
C. F.
Xue
,
H. G.
Liu
,
Z. J.
Xu
,
Y. Q.
Wu
, and
R. Z.
Tai
, Nucl. Sci. Tech.
26
,
010101
(
2015
).
10.
H.
Shiotani
,
S.
Suzuki
,
D. G.
Lee
,
P.
Naulleau
,
Y.
Fukushima
,
R.
Ohnishi
,
T.
Watanabe
, and
H.
Kinoshita
,
Jpn. J. Appl. Phys., Part 1
47
,
4881
(
2008
).
11.
Y.
Ekinci
,
M.
Vockenhuber
,
M.
Hojeij
,
L.
Wang
, and
N. M.
Mojarad
,
Proc. SPIE
8679
,
867910
(
2013
).
12.
H. H.
Solak
and
Y.
Ekinci
,
J. Vac. Sci. Technol., B
23
,
2705
(
2005
).
13.
L.
Wang
,
B.
Terhalle
,
M.
Hojeij
,
V. A.
Guzenko
, and
Y.
Ekinci
,
J. Vac. Sci. Technol., B
30
,
031603
(
2012
).
14.
W.
Karim
,
S. A.
Tschupp
,
M.
Oezaslan
,
T. J.
Schmidt
,
J.
Gobrecht
,
J. A.
van Bokhoven
, and
Y.
Ekinci
,
Nanoscale
7
,
7386
(
2015
).
15.
D.
Fan
,
E.
Buitrago
,
S. M.
Yang
,
W.
Karim
,
Y. Q.
Wu
,
R. Z.
Tai
, and
Y.
Ekinci
,
Microelectron. Eng.
155
,
55
(
2016
).
16.
17.
S.
Brose
,
S.
Danylyuk
,
J.
Tempeler
,
H.
Kim
,
P.
Loosen
, and
L.
Juschkin
,
Proc. SPIE
9776
,
97760R
(
2016
).
18.
N.
Guérineau
,
B.
Harchaoui
, and
J.
Primot
,
Opt. Commun.
180
,
199
(
2000
).
19.
J. T.
Winthrop
and
C. R.
Worthington
,
J. Opt. Soc. Am.
55
,
373
(
1965
).
20.
S.
Danylyuk
,
P.
Loosen
,
K.
Bergmann
,
H.
Kim
, and
L.
Juschkin
,
J. Micro-Nanolithogr. MEMS.
12
,
033002
(
2013
).
22.
H. H.
Solak
,
C.
David
,
J.
Gobrecht
,
V.
Golovkina
,
F.
Cerrina
,
S. O.
Kim
, and
P. F.
Nealey
,
Microelectron. Eng.
67–68
,
56
(
2003
).
23.
S.
Sasaki
,
Nucl. Instrum. Method A
347
,
83
(
1994
).
24.
Q. G.
Zhou
,
M.
Zhang
,
Y.
Li
,
Z. M.
Qian
, and
J. D.
Zhang
, “
An APPLE-II type helical undulator for SSRF
,” in
APAC
(
Raja Ramanna Centre for Advanced Technology (RRCAT)
,
Indore
,
2007
), p.
P714
.
25.
H.
Kim
,
W.
Li
,
S.
Danylyuk
,
W. S.
Brocklesby
,
M. C.
Marconi
, and
L.
Juschkin
,
J. Phys. D: Appl. Phys.
48
,
375101
(
2015
).
You do not currently have access to this content.