The passivation of InGaAs by thin AlN layers allows a significant reduction of the interface state density compared to that of the widely used Al2O3/InGaAs structure. The influence of the AlN layer thickness on the interface electrical properties, as well as the role of the post-deposition annealing, was carefully examined. Ultrathin AlN layers (∼1 nm) provide high quality interfacial electrical properties after a mild anneal (400 °C). Thick AlN passivation layers require annealing at higher temperature (500 °C) to achieve low interface states density. Possible explanations of the observed trend are suggested.

2.
H.
Riel
,
L. E.
Wernersson
,
M.
Hong
, and
J. A.
del Alamo
,
MRS Bull.
39
,
668
(
2014
).
3.
S.
Oktyabrsky
and
P. D.
Ye
,
Fundamentals of III–V Semiconductor MOSFETs
(
Springer
,
New York
,
2010
).
4.
D.
Colleoni
,
G.
Miceli
, and
A.
Pasquaello
,
Microelectron. Eng.
147
,
260
(
2015
).
5.
L.
Lin
and
J.
Robertson
,
Appl. Phys. Lett.
98
,
082903
(
2011
).
6.
B.
Shin
,
J. B.
Clemens
,
M. A.
Kelly
,
A. C.
Kummel
, and
P. C.
McIntyre
,
Appl. Phys. Lett.
96
,
252907
(
2010
).
7.
I.
Krylov
,
D.
Ritter
, and
M.
Eizenberg
,
J. Appl. Phys.
117
,
174501
(
2015
).
8.
J.
Ahn
,
T.
Kent
,
E.
Chagarov
,
K.
Tang
,
A. C.
Kummel
, and
P. C.
McIntyre
,
Appl. Phys. Lett.
103
,
071602
(
2013
).
9.
R.
Suzuki
 et al.,
Appl. Phys. Lett.
100
,
132906
(
2012
).
10.
J.
Robertson
and
L.
Lin
,
Appl. Phys. Lett.
99
,
222906
(
2011
).
11.
M.
Milojevich
,
F. S.
Aguirre-Tostado
,
C. L.
Hinkle
,
H. C.
Kim
,
E. M.
Vogel
,
J.
Kim
, and
R. M.
Wallace
,
Appl. Phys. Lett.
93
,
202902
(
2008
).
12.
B.
Brennan
,
D. M.
Zhernokletov
,
H.
Dong
,
C. L.
Hinkle
,
J.
Kim
, and
R. M.
Wallace
,
Appl. Phys. Lett.
100
,
151603
(
2012
).
13.
I.
Krylov
,
B.
Pokroy
,
D.
Ritter
, and
M.
Eizenberg
,
J. Appl. Phys.
119
,
084507
(
2016
).
14.
Q. H.
Luc
,
E. Y.
Chang
,
H. D.
Trinh
,
Y. C.
Lin
,
H. Q.
Nguyen
,
Y. Y.
Wong
,
H. B.
Do
,
S.
Salahuddin
, and
C. C.
Hu
,
IEEE Trans. Electron Devices
61
,
2774
(
2014
).
15.
L. S.
Wang
,
L. L.
Liu
,
J. P.
Xu
,
S. Y.
Zhu
,
Y.
Huang
, and
P. T.
Lai
,
IEEE Trans. Electron Devices
91
,
742
(
2014
).
16.
C.
Weiland
,
A. K.
Rumaiz
,
J.
Prices
,
P.
Lysaght
, and
J. C.
Woick
,
J. Appl. Phys.
114
,
034107
(
2013
).
17.
I.
Krylov
,
A.
Gavrilov
,
M.
Eizenberg
, and
D.
Ritter
,
Appl. Phys. Lett.
101
,
063504
(
2012
).
18.
E. H.
Nicollian
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley
,
New York
,
1982
).
19.
R.
Winter
,
J.
Ahn
,
P. C.
McIntyre
, and
M.
Eizenberg
,
J. Vac. Sci. Technol., B
31
,
030604
(
2013
).
20.
I.
Krylov
,
L.
Kornblum
,
A.
Gavrilov
,
D.
Ritter
, and
M.
Eizenberg
,
Appl. Phys. Lett.
100
,
173508
(
2012
).
21.
G.
Brammertz
,
A.
Alian
,
D.
Lin
,
M.
Meuris
,
M.
Caymax
, and
W. E.
Wang
,
IEEE Trans. Electron Devices
58
,
3890
(
2011
).
22.
H. P.
Chen
,
J.
Ahn
,
P. C.
McIntyre
, and
Y.
Taur
,
J. Vac. Sci. Technol., B
32
,
03D111
(
2014
).
23.
I.
Krylov
,
R.
Winter
,
D.
Ritter
, and
M.
Eizenberg
,
Appl. Phys. Lett.
104
,
243504
(
2014
).
You do not currently have access to this content.