This paper presents a novel mirror-tunable laser interference system for the wafer-scale patterning (>4-in.) of submicron grating structures with a flexible periodicity (200–1000 nm) in a compact and cost-effective manner. The proposed system guides and splits the laser beam into two expanded light beams propagating in a downward direction to be reflected by rotatable ultraviolet mirrors to produce interference patterns. The incident angle of two light beams can be controlled by rotating the mirrors until they match the targeted periodicity of the grating, without the need to reconfigure the optical paths. The fact that light polarization changes with the rotation angle of the mirrors necessitates the use of a half-wave plate along each optical path to adjust the direction of polarization perpendicular to the plane of incident light. The proposed system enables large-area fabrication and wide-range grating tunability, making it highly useful for applications that require wafer-scale patterning of submicron periodic structures, such as flexible wire-grid polarizers for displays, patterned sapphire substrates for light-emitting diodes, and Bragg gratings for distributed feedback lasers.

1.
P.
Mehrotra
,
C. A.
Mack
, and
R. J.
Blaikie
,
Opt. Express
21
,
13710
(
2013
).
2.
J.
Lutkenhaus
,
D.
George
,
M.
Moazzezi
,
U.
Philipose
, and
Y.
Lin
,
Opt. Express
21
,
26227
(
2013
).
3.
T. M.
Bloomstein
,
M. F.
Marchant
,
S.
Deneault
,
D. E.
Hardy
, and
M.
Rothschild
,
Opt. Express
14
,
6434
(
2006
).
4.
J.-H.
Seo
,
J.
Park
,
D.
Zhao
,
H.
Yang
,
W.
Zhou
,
B.-K.
Ju
, and
Z.
Ma
,
IEEE Photonics J.
5
,
2200106
(
2013
).
5.
S.
Jeon
,
J.-U.
Park
,
R.
Cirelli
,
S.
Yang
,
C. E.
Heitzman
,
P. V.
Braun
,
P. J. A.
Kenis
, and
J. A.
Rogers
,
PNAS
101
,
12428
(
2004
).
6.
I.
Bita
,
T.
Choi
,
M. E.
Walsh
,
H. I.
Smith
, and
E. L.
Thomas
,
Adv. Mater.
19
,
1403
(
2007
).
7.
L.
Yuan
and
P. R.
Herman
,
Sci. Rep.
6
,
22294
(
2016
).
8.
I.
Wathuthanthri
,
W.
Mao
, and
C.-H.
Choi
,
Opt. Lett.
36
,
1593
(
2011
).
9.
T. B.
O'Reilly
and
H. I.
Smith
,
J. Vac. Sci. Technol., B
26
,
2131
(
2008
).
10.
E.-C.
Chang
,
D.
Mikolas
,
P.-T.
Lin
,
T.
Schenk
,
C.-L.
Wu
,
C.-K.
Sung
, and
C.-C.
Fu
,
Nanotechnology
24
,
455301
(
2013
).
11.
W.
Mao
,
I.
Wathuthanthri
, and
C.-H.
Choi
,
Opt. Lett.
36
,
3176
(
2011
).
12.
K.
Du
,
I.
Wathuthanthri
,
W.
Mao
,
W.
Xu
, and
C.-H.
Choi
,
Nanotechnology
22
,
285306
(
2011
).
13.
Y.-J.
Hung
,
S.-L.
Lee
,
Y.-T.
Pan
,
B. J.
Thibeault
, and
L. A.
Coldren
,
J. Vac. Sci. Technol., B
28
,
1030
(
2010
).
14.
J.
He
,
Y.
Lin
, and
X.
Zhang
,
Opt. Express
22
,
26386
(
2014
).
15.
H.
Korre
and
C. P.
Fucetola
,
J. Vac. Sci. Technol., B
28
,
C6Q20
(
2010
).
16.
C. P.
Fucetola
,
H.
Korre
, and
K. K.
Berggren
,
J. Vac. Sci. Technol., B
27
,
2958
(
2009
).
17.
E. J.
Galvez
and
P. M.
Koch
,
J. Opt. Soc. Am. A
14
,
3410
(
1997
).
18.
J. A.
Hoffnagle
and
C. M.
Jefferson
,
Appl. Opt.
39
,
5488
(
2000
).
You do not currently have access to this content.