Bandgap modification in graphene has received immense attention in the quest to develop postsilicon electronic materials. Hydrogenation of graphene has largely been the focus of bandgap modification; however, current research has relied solely upon the appearance of structural defects in Raman spectroscopy to evaluate the extent of hydrogenation. Here, the authors present time-of-flight secondary ion mass spectrometry (ToF-SIMS) as a complementary tool to Raman in determining the chemical changes occurring concurrently with structural defects. Multivariate analysis, through the use of principal component analysis (PCA) is coupled to ToF-SIMS analysis for the rapid determination of differences in surface chemistry between samples. Untreated graphene was found to exhibit a minimal defect intensity in the Raman with the most prominent ion intensities in the ToF-SIMS originating from unsaturated, graphene-like carbon fragments. However, exposure to H2 plasma results in the evolution of a structural defect in the Raman which coincides with a mass shift toward ions representing hydrogen-rich, saturated hydrocarbons in addition to aliphatic oxides. The use of PCA on the resultant ion images and spectra allowed for rapid differentiation between samples based upon chemical species, rather than the intensity of a lattice defect alone, with high intra- and intersample reproducibility.

1.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
2.
Y.-M.
Lin
,
K. A.
Jenkins
,
A.
Valdes-Garcia
,
J. P.
Small
,
D. B.
Farmer
, and
P.
Avouris
,
Nano Lett.
9
,
422
(
2009
).
3.
Y.
Zhang
,
Y. W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature
438
,
201
(
2005
).
4.
J. S.
Burgess
,
B. R.
Matis
,
J. T.
Robinson
,
F. A.
Bulat
,
F.
Keith Perkins
,
B. H.
Houston
, and
J. W.
Baldwin
,
Carbon
49
,
4420
(
2011
).
5.
P. R.
Wallace
,
Phys. Rev.
71
,
622
(
1947
).
6.
S.
Lebègue
,
M.
Klintenberg
,
O.
Eriksson
, and
M. I.
Katsnelson
,
Phys. Rev. B
79
,
245117
(
2009
).
7.
L.
Liao
,
H.
Peng
, and
Z.
Liu
,
J. Am. Chem. Soc.
136
,
12194
(
2014
).
8.
Z.
Luo
,
T.
Yu
,
Z.
Ni
,
S.
Lim
,
H.
Hu
,
J.
Shang
,
L.
Liu
,
Z.
Shen
, and
J.
Lin
,
J. Phys. Chem. C
115
,
1422
(
2011
).
9.
Z.
Luo
,
T.
Yu
,
K. J.
Kim
,
Z.
Ni
,
Y.
You
,
S.
Lim
,
Z.
Shen
,
S.
Wang
, and
J.
Lin
,
ACS Nano
3
,
1781
(
2009
).
10.
Z.
Luo
,
J.
Shang
,
S.
Lim
,
D.
Li
,
Q.
Xiong
,
Z.
Shen
,
J.
Lin
, and
T.
Yu
,
Appl. Phys. Lett.
97
,
233111
(
2010
).
11.
M.
Jaiswal
,
C. H. Y. X.
Lim
,
Q.
Bao
,
C. T.
Toh
,
K. P.
Loh
, and
B.
Ozyilmaz
,
ACS Nano
5
,
888
(
2011
).
12.
D. C.
Elias
 et al,
Science
323
,
610
(
2009
).
13.
M.
Pumera
and
C. H.
Wong
,
Chem Soc. Rev.
42
,
5987
(
2013
).
14.
J.
Sofo
,
A.
Chaudhari
, and
G.
Barber
,
Phys. Rev. B
75
,
153401
(
2007
).
15.
A.
Thangaraja
,
S. M.
Shinde
,
G.
Kalita
,
R.
Papon
,
S.
Sharma
,
R.
Vishwakarma
,
K. P.
Sharma
, and
M.
Tanemura
,
Appl. Phys. Lett.
106
,
253106
(
2015
).
16.
B.
Eren
,
D.
Hug
,
L.
Marot
,
R.
Pawlak
,
M.
Kisiel
,
R.
Steiner
,
D. M.
Zumbuhl
, and
E.
Meyer
,
Beilstein J. Nanotechnol.
3
,
852
(
2012
).
17.
L.
Zheng
,
Z.
Li
,
S.
Bourdo
,
F.
Watanabe
,
C. C.
Ryerson
, and
A. S.
Biris
,
Chem. Commun.
47
,
1213
(
2011
).
18.
M.
Wojtaszek
,
N.
Tombros
,
A.
Caretta
,
P. H. M.
van Loosdrecht
, and
B. J.
van Wees
,
J. Appl. Phys.
110
,
063715
(
2011
).
19.
A.
Felten
,
A.
Eckmann
,
J. J.
Pireaux
,
R.
Krupke
, and
C.
Casiraghi
,
Nanotechnology
24
,
355705
(
2013
).
20.
W.
Xie
,
L.-T.
Weng
,
K. M.
Ng
,
C. K.
Chan
, and
C.-M.
Chan
,
Carbon
94
,
740
(
2015
).
21.
V. M.
Mikoushkin
,
S. Y.
Nikonov
,
A. T.
Dideykin
,
A. Y.
Vul
,
D. A.
Sakseev
,
M. V.
Baidakova
,
O. Y.
Vilkov
, and
A. V.
Nelyubov
,
Appl. Phys. Lett.
102
,
071910
(
2013
).
22.
S. T.
Jackson
and
R. G.
Nuzzo
,
Appl. Surf. Sci.
90
,
195
(
1995
).
23.
J. D.
Jones
,
K. K.
Mahajan
,
W. H.
Williams
,
P. A.
Ecton
,
Y.
Mo
, and
J. M.
Perez
,
Carbon
48
,
2335
(
2010
).
24.
J. D.
Jones
,
W. D.
Hoffmann
,
A. V.
Jesseph
,
C. J.
Morris
,
G. F.
Verbeck
, and
J. M.
Perez
,
Appl. Phys. Lett.
97
,
233104
(
2010
).
25.
L.
Wang
,
N. R.
Stuckert
, and
R. T.
Yang
,
AlChE J.
57
,
2902
(
2011
).
26.
Y.
Kojima
and
N.
Suzuki
,
Appl. Phys. Lett.
84
,
4113
(
2004
).
27.
J.-H.
Zhou
,
Z.-J.
Sui
,
J.
Zhu
,
P.
Li
,
D.
Chen
,
Y.-C.
Dai
, and
W.-K.
Yuan
,
Carbon
45
,
785
(
2007
).
28.
I.
Jung
 et al,
J. Phys. Chem. C
113
,
18480
(
2009
).
29.
J. L.
Figueiredo
,
M. F. R.
Pereira
,
M. M. A.
Freitas
, and
J. J. M.
Orfao
,
Carbon
37
,
1379
(
1999
).
30.
31.
H. F.
Gorgulho
,
J. P.
Mesquita
,
F.
Gonçalves
,
M. F. R.
Pereira
, and
J. L.
Figueiredo
,
Carbon
46
,
1544
(
2008
).
32.
J. C.
Vickerman
and
D.
Briggs
,
ToF-SIMS: Materials Analysis by Mass Spectrometry
(
IM
,
West Sussex, UK
,
2013
).
33.
D. J.
Graham
,
M. S.
Wagner
, and
D. G.
Castner
,
Appl. Surf. Sci.
252
,
6860
(
2006
).
34.
M.
Dubey
,
K.
Emoto
,
F.
Cheng
,
L. J.
Gamble
,
H.
Takahashi
,
D. W.
Grainger
, and
D. G.
Castner
,
Surf. Interface Anal.
41
,
645
(
2009
).
35.
M. C.
Biesinger
,
P.-Y.
Paepegaey
,
N. S.
McIntyre
,
R. R.
Harbottle
, and
N. O.
Peterson
,
Anal. Chem.
74
,
5711
(
2002
).
36.
M. L.
Pacholski
,
Appl. Surf. Sci.
231–232
,
235
(
2004
).
37.
R.
Sharma
,
J. H.
Baik
,
C. J.
Perera
, and
M. S.
Strano
,
Nano Lett.
10
,
398
(
2010
).
38.
Z.
Luo
 et al,
J. Mater. Chem.
21
,
8038
(
2011
).
39.
H.
Hwang
,
P.
Joo
,
M. S.
Kang
,
G.
Ahn
,
J. T.
Han
,
B.-S.
Kim
, and
J. H.
Cho
,
ACS Nano
6
,
2432
(
2012
).
40.
Y.
Wu
 et al,
ACS Nano
6
,
7731
(
2012
).
41.
Q.
Li
 et al,
Nano Lett.
13
,
486
(
2013
).
42.
A.
Ashraf
,
Y.
Wu
,
M. C.
Wang
,
N. R.
Aluru
,
S. A.
Dastgheib
, and
S.
Nam
,
Langmuir
30
,
12827
(
2014
).
43.
G.
Lupina
 et al,
ACS Nano
9
,
4776
(
2015
).
44.
S.
Rinnen
,
C.
Stroth
,
A.
Riße
,
C.
Ostertag-Henning
, and
H. F.
Arlinghaus
,
Appl. Surf. Sci.
349
,
622
(
2015
).
45.
T.
Miyasaka
,
T.
Ikemoto
, and
T.
Kohno
,
Appl. Surf. Sci.
255
,
1576
(
2008
).
46.
T.
Kono
,
E.
Iwase
, and
Y.
Kanamori
,
Appl. Surf. Sci.
255
,
997
(
2008
).
47.
H.-I.
Joh
,
S.
Bae
,
S.
Lee
, and
E. S. W.
Kong
,
Nanomaterials, Polymers and Devices: Materials Functionalization and Device Fabrication
, edited by
E. S.
Kong
(
Wiley
,
New York
,
2015
), pp.
81
119
.
48.
R. B.
D'Agostino
and
H. K.
Russell
,
Encyclopedia of Biostatistics
(
Wiley
,
New York, NY
,
2005
).
49.
T.
Shimada
 et al,
Carbon
43
,
1049
(
2005
).
50.
M. S.
Dresselhaus
,
G.
Dresselhaus
,
R.
Saito
, and
A.
Jorio
,
Phys. Rep.
409
,
47
(
2005
).
51.
I.
Childres
,
L. A.
Jauregui
,
W.
Park
,
H.
Cao
, and
Y. P.
Chen
,
Developments in Photon and Materials Research
, edited by
J. I.
Jang
(
Nova Science
,
Hauppauge, NY
,
2013
).
52.
S.
Polizu
,
M.
Maugey
,
S.
Poulin
,
P.
Poulin
, and
L. H.
Yahia
,
Appl. Surf. Sci.
252
,
6750
(
2006
).
You do not currently have access to this content.