A novel fabrication technique is described for the production of multimaterial, lithographically defined, topography-free samples for use in experiments to investigate the nature of contrast in scanning probe microscopy (SPM). The approach uses a flat sacrificial substrate as the base for fabrication, which is deleted in the final step. This leaves an exposed, flat surface with patterns of materials contrast defined during the lithography stages. In the example application presented, these are designed to challenge the detection ability of a scanning thermal microscopy (SThM) probe, although many other applications can be envisioned. There are many instances in SPM where images can exhibit topographically induced artifacts. In SThM, these can result in a change of the thermal signal which can easily be misinterpreted as changes in the sample thermal conductivity or temperature. The elimination of these artifacts through postprocessing requires a knowledge of how the probe responds thermal features of differing sizes. The complete sample fabrication process, followed by successful topographic/thermal scanning is demonstrated, showing sub-1.5 nm topography with a clear artifact-free thermal signal from sub-100 nm gold wires. The thermal spatial resolution is determined for the sample materials and probe used in this study to be in the range of 35–75 nm.

1.
L.
Zhang
,
T.
Sakai
,
N.
Sakuma
,
T.
Ono
, and
K.
Nakayama
,
Appl. Phys. Lett.
75
,
3527
(
1999
).
2.
U.
Hartmann
,
Annu. Rev. Mater. Sci.
29
,
53
(
1999
).
3.
M.
Nonnenmacher
and
H. K.
Wickramasinghe
,
Appl. Phys. Lett.
61
,
168
(
1992
).
4.
P.
Klapetek
,
Quantitative Data Processing in Scanning Probe Microscopy: SPM Applications for Nanometrology
(
Elsevier
,
Burlington
,
2012
), p.
221
, 245.
5.
6.
V. F.
Dryakhlushin
,
A. Y.
Klimov
,
V. V.
Rogov
, and
N. V.
Vostokov
,
Appl. Surf. Sci.
248
,
200
(
2005
).
7.
O.
Fenwick
,
G.
Latini
, and
F.
Cacialli
,
Synth. Met.
147
,
171
(
2004
).
8.
R.
Mahajan
,
C. P.
Chiu
, and
G.
Chrysler
,
Proc. IEEE
94
,
1476
(
2006
).
9.
S.
Gradečak
,
F.
Qian
,
Y.
Li
,
H. G.
Park
, and
C. M.
Lieber
,
Appl. Phys. Lett.
87
,
173111
(
2005
).
10.
C.
Guthy
,
C. Y.
Nam
, and
J. E.
Fischer
,
J. Appl. Phys.
103
,
064319
(
2008
).
11.
J.
Zou
,
J. Appl. Phys.
108
,
034324
(
2010
).
12.
M.
Kuball
,
S.
Rajasingam
,
A.
Sarua
,
M. J.
Uren
,
T.
Martin
,
B. T.
Hughes
,
K. P.
Hilton
, and
R. S.
Balmer
,
Appl. Phys. Lett.
82
,
124
(
2003
).
13.
D.
Teyssieux
,
L.
Thiery
, and
B.
Cretin
,
Rev. Sci. Instrum.
78
,
034902
(
2007
).
14.
T.
Fujii
,
Y.
Taguchi
,
T.
Saiki
, and
Y.
Nagasaka
,
Rev. Sci. Instrum.
83
,
124901
(
2012
).
15.
C. C.
Williams
and
H. K.
Wickramasinghe
,
Appl. Phys. Lett.
49
,
1587
(
1986
).
16.
L.
Shi
,
O.
Kwon
,
A. C.
Miner
, and
A.
Majumdar
,
J. Microelectromech. Syst.
10
,
370
(
2001
).
17.
G.
Mills
,
H.
Zhou
,
A.
Midha
,
L.
Donaldson
, and
J. M. R.
Weaver
,
Appl. Phys. Lett.
72
,
2900
(
1998
).
18.
D. G.
Cahill
,
H. E.
Fischer
,
T.
Klitsner
,
E. T.
Swartz
, and
R. O.
Pohl
,
J. Vac. Sci. Technol. A
7
,
1259
(
1989
).
19.
S.
Volz
,
X.
Feng
,
C.
Fuentes
,
P.
Guérin
, and
M.
Jaouen
,
Int. J. Thermophys.
23
,
1645
(
2002
).
20.
V. M.
Asnin
,
F. H.
Pollak
,
J.
Ramer
,
M.
Schurman
, and
I.
Ferguson
,
Appl. Phys. Lett.
75
,
1240
(
1999
).
21.
A.
Soudi
,
R. D.
Dawson
, and
Y.
Gu
,
ACS Nano
5
,
255
(
2011
).
22.
F.
Menges
,
H.
Riel
,
A.
Stemmer
, and
B.
Gotsmann
,
Nano Lett.
12
,
596
(
2012
).
23.
S.
Somnath
and
W. P.
King
,
Nanotechnology
25
,
365501
(
2014
).
24.
K.
Kim
,
J.
Chung
,
G.
Hwang
,
O.
Kwon
, and
J. S.
Lee
,
ACS Nano
5
,
8700
(
2011
).
25.
A.
Majumdar
,
Annu. Rev. Mater. Sci.
29
,
505
(
1999
).
26.
L.
Shi
,
O.
Kwon
,
G.
Wu
, and
A.
Majumdar
, in
Proceedings of the 38th Annual 2000 IEEE International Reliability Physics Symposium
, San Jose, CA, 10–13 April 2000 (
IEEE
,
Piscataway, NJ
,
2000
), pp.
394
398
.
27.
L.
Shi
and
A.
Majumdar
,
J. Heat Transfer
124
,
329
(
2002
).
28.
S.
Gomès
,
A.
Assy
, and
P. O.
Chapuis
,
Phys. Status Solidi
212
,
477
(
2015
).
29.
B.
Gotsmann
and
M. A.
Lantz
,
Nat. Mater.
12
,
59
(
2012
).
30.
P.
Klapetek
,
I.
Ohlídal
, and
J.
Buršík
,
Surf. Interface Anal.
38
,
383
(
2006
).
31.
A.
Assy
,
S.
Lefèvre
,
P. O.
Chapuis
, and
S.
Gomès
,
J. Phys. D: Appl. Phys.
47
,
442001
(
2014
).
32.
A.
Assy
and
S.
Gomès
,
Nanotechnology
26
,
355401
(
2015
).
33.
M.
Thompson Pettes
and
L.
Shi
,
J. Heat Transfer
136
,
032401
(
2013
).
34.
A.
Assy
and
S.
Gomès
,
Appl. Phys. Lett.
107
,
043105
(
2015
).
35.
A.
Hammiche
,
H. M.
Pollock
,
M.
Song
, and
D. J.
Hourston
,
Meas. Sci. Technol.
7
,
142
(
1999
).
36.
L.
Zhou
,
G. Q.
Xu
,
H. T.
Ng
, and
S. F. Y.
Li
,
J. Vac. Sci. Technol. B
15
,
1871
(
1997
).
37.
S.
Sadat
,
A.
Tan
,
Y. J.
Chua
, and
P.
Reddy
,
Nano Lett.
10
,
2613
(
2010
).
38.
L.
Shi
,
S.
Plyasunov
,
A.
Bachtold
,
P. L.
McEuen
, and
A.
Majumdar
,
Appl. Phys. Lett.
77
,
4295
(
2000
).
39.
M.
Hinz
,
O.
Marti
,
B.
Gotsmann
,
M. A.
Lantz
, and
U.
Dürig
,
Appl. Phys. Lett.
92
,
043122
(
2008
).
40.
G.
Banerjee
and
R. L.
Rhoades
,
ECS Trans.
13
,
1
(
2008
).
41.
O. V.
Kolosov
,
I.
Grishin
, and
R.
Jones
,
Nanotechnology
22
,
185702
(
2011
).
42.
K. E.
Docherty
,
S.
Thoms
,
P. S.
Dobson
, and
J. M. R.
Weaver
,
Microelectron. Eng.
85
,
761
(
2008
).
43.
J. J.
Brophy
,
M.
Epstein
, and
S. L.
Webb
,
Rev. Sci. Instrum.
36
,
1803
(
1965
).
44.
H.
Zhou
,
K.
Elgaid
,
C.
Wilkinson
, and
I.
Thayne
,
Jpn. J. Appl. Phys.
45
,
8388
(
2006
).
45.
M. V.
Lebedev
,
E.
Mankel
,
T.
Mayer
, and
W.
Jaegermann
,
J. Phys. Chem. C
112
,
18510
(
2008
).
46.
H.
Zhou
,
A.
Midha
,
G.
Mills
,
S.
Thoms
,
S. K.
Murad
, and
J. M. R.
Weaver
,
J. Vac. Sci. Technol. B
16
,
54
(
1998
).
47.
B. E. E.
Kastenmeier
,
P. J.
Matsuo
,
J. J.
Beulens
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
14
,
2802
(
1996
).
48.
K. R.
Williams
,
K.
Gupta
, and
M.
Wasilik
,
J. Microelectromech. Syst.
12
,
761
(
2003
).
49.
P. C.
Fletcher
,
B.
Lee
, and
W. P.
King
,
Nanotechnology
23
,
035401
(
2011
).
50.
Y.
Zhang
,
P. S.
Dobson
, and
J. M. R.
Weaver
,
J. Vac. Sci. Technol. B
30
,
010601
(
2012
).
51.
S.
Thoms
and
D. S.
MacIntyre
,
J. Vac. Sci. Technol. B
28
,
C6H6
(
2010
).
52.
K.
Luo
,
Z.
Shi
,
J.
Varesi
, and
A.
Majumdar
,
J. Vac. Sci. Technol. B
15
,
349
(
1997
).
53.
L.
Shi
and
A.
Majumdar
,
Applied Scanning Probe Methods Part II
(
Springer
,
Berlin, Heidelberg
,
2004
), pp.
327
362
.
54.
V. V.
Gorbunov
,
N.
Fuchigami
,
J. L.
Hazel
, and
V. V.
Tsukruk
,
Langmuir
15
,
8340
(
1999
).
55.
W. P.
King
,
B.
Bhatia
,
J. R.
Felts
,
H. J.
Kim
,
B.
Kwon
,
B.
Lee
,
S.
Somnath
, and
M.
Rosenberger
,
Annu. Rev. Heat Transfer
16
,
287
(
2013
).
56.
57.
R.
Sultan
,
A. D.
Avery
,
J. M.
Underwood
,
S. J.
Mason
,
D.
Bassett
, and
B. L.
Zink
,
Phys. Rev. B
87
,
214305
(
2013
).
58.
D.
Canchal-Arias
and
P.
Dawson
,
Surf. Sci.
577
,
95
(
2005
).
59.
M. M.
Yovanovich
,
J. R.
Culham
, and
P.
Teertstra
,
IEEE Trans. Compon. Packag. A
21
,
168
(
1998
).
60.
B.
Gotsmann
,
M. A.
Lantz
,
A.
Knoll
, and
U.
Dürig
, “
Nanoscale thermal and mechanical interactions studied using heatable probes
,” in
Nanotechnology
, edited by
H.
Fuchs
(
Wiley-VCH
,
Weinheim
,
2009
), Vol. 6, pp.
121
169
.
61.
B. A.
Nelson
and
W. P.
King
,
Nanoscale Microscale Thermophys. Eng.
12
,
98
(
2008
).
62.
V.
Bahadur
,
J.
Xu
,
Y.
Liu
, and
T. S.
Fisher
,
J. Heat Transfer
127
,
664
(
2005
).
You do not currently have access to this content.