Metal contamination deposited on few-layer graphene (3 ± 1 monolayers) grown on SiC(0001) was successfully removed from the surface, using low cost adhesive tape. More than 99% of deposited silver contamination was removed from the surface via peeling, causing minimal damage to the graphene. A small change in the adhesion of graphene to the SiC(0001) substrate was indicated by changes observed in pleat defects on the surface; however, atomic resolution images show the graphene lattice remains pristine. Thin layers of contamination deposited via an electron gun during Auger electron spectroscopy/low energy electron diffraction measurements were also found to be removable by this technique. This contamination showed similarities to “roughened” graphene previously reported in the literature.

1.
F.
Schedin
,
A. K.
Geim
,
S. V.
Morozov
,
E. W.
Hill
,
P.
Blake
,
M. I.
Katnelson
, and
K. S.
Novoselov
,
Nat. Mater.
6
,
652
(
2007
).
2.
Y.
Dan
,
Y.
Lu
,
N. J.
Kybert
,
Z.
Luo
, and
A. T. C.
Johnson
,
Nano Lett.
9
,
1472
(
2009
).
3.
Y.
Shao
,
J.
Wang
,
H.
Wu
,
J.
Liu
,
I. A.
Aksay
, and
Y.
Lin
,
Electroanalysis
22
,
1027
(
2010
).
4.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
5.
X.
Li
 et al,
Science
324
,
1312
(
2009
).
6.
W. A.
de Heer
 et al,
Solid State Commun.
143
,
92
(
2007
).
7.
S.
Adam
,
E. H.
Hwang
,
V. M.
Galitski
, and
S. D.
Sarma
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
18392
(
2007
).
8.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
,
Solid State Commun.
146
,
351
(
2008
).
9.
Y.
Zhang
,
V. W.
Brar
,
C.
Girit
,
A.
Zettl
, and
M. F.
Crommie
,
Nat. Phys.
5
,
722
(
2009
).
10.
Z.
Li
 et al,
Nat. Mater.
12
,
925
(
2013
).
11.
A.
Ambrosi
,
C. K.
Chua
,
B.
Khezri
,
Z.
Sofer
,
R. D.
Webster
, and
M.
Pumera
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
12899
(
2012
).
12.
A.
Ambrosi
and
M.
Pumera
,
Nanoscale
6
,
472
(
2014
).
13.
G.
Lupina
 et al,
ACS Nano
9
,
4776
(
2015
).
14.
Z.
Cheng
,
Q.
Zhou
,
C.
Wang
,
Q.
Li
,
C.
Wang
, and
T.
Fang
,
Nano Lett.
11
,
767
(
2011
).
15.
Z. H.
Ni
,
H. M.
Wang
,
Z. Q.
Luo
,
Y. Y.
Wang
,
T.
Yu
,
Y. H.
Wu
, and
Z. X.
Shen
,
J. Raman Spectrosc.
41
,
479
(
2010
).
16.
N.
Lindvall
,
A.
Kalabukhov
, and
A.
Yurgens
,
J. Appl. Phys.
111
,
064904
(
2012
).
17.
A. M.
Goossens
,
V. E.
Calado
,
A.
Barreiro
,
K.
Watanabe
,
T.
Taniguchi
, and
L. M. K.
Vandersypen
,
Appl. Phys. Lett.
100
,
073110
(
2012
).
18.
C. A.
Joiner
,
T.
Roy
,
Z. R.
Hesabi
,
B.
Chakrabarti
, and
E. M.
Vogel
,
Appl. Phys. Lett.
104
,
223109
(
2014
).
19.
J.
Moser
,
A.
Barreiro
, and
A.
Bachtold
,
Appl. Phys. Lett.
91
,
163513
(
2007
).
20.
S. N.
Luxmi
,
P. J.
Fisher
,
R. M.
Feenstra
,
G.
Gu
, and
Y.-G.
Sun
,
J. Electron. Mater.
38
,
718
(
2009
).
21.
T.
Hopf
 et al,
J. Appl. Phys.
116
,
154504
(
2014
).
22.
G. H.
Wells
,
T.
Hopf
,
K. V.
Vassilevski
,
E.
Escobedo-Cousin
,
N. G.
Wright
,
A. B.
Horsfall
,
J. P.
Goss
,
A. G.
O'Neill
, and
M. R. C.
Hunt
,
Appl. Phys. Lett.
105
,
193109
(
2014
).
23.
W. A.
de Heer
,
C.
Berger
,
M.
Ruan
,
M.
Sprinkle
,
X.
Li
,
Y.
Hu
,
B.
Zhang
,
J.
Hankinson
, and
E.
Conrad
,
Proc. Natl. Aca. Sci. U. S. A.
108
,
16900
(
2011
).
24.
B.
Kiraly
,
E. V.
Iski
,
A. J.
Mannix
,
B. L.
Fisher
,
M. C.
Hersam
, and
N. P.
Guisinger
,
Nature Commun.
4
,
2804
(
2013
).
25.
S. P.
Koenig
,
N. G.
Boddeti
,
M. L.
Dunn
, and
J. S.
Bunch
,
Nat. Nanotechnol.
6
,
543
(
2011
).
26.
T.
Yoon
,
W. C.
Shin
,
T. Y.
Kim
,
J. H.
Mun
,
T.-S.
Kim
, and
B. J.
Cho
,
Nano Lett.
12
,
1448
(
2012
).
27.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
28.
F.
Banhart
,
J.
Kotakoski
, and
A. V.
Krasheninnikov
,
ACS Nano
5
,
26
(
2011
).
29.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
30.
A.
Mattausch
and
O.
Pankratov
,
Phys. Rev. Lett.
99
,
076802
(
2007
).
31.
J.
Lahiri
,
T. S.
Miller
,
A. J.
Ross
,
L.
Adamska
,
I. I.
Oleynik
, and
M.
Batzill
,
New J. Phys.
13
,
025001
(
2011
).
You do not currently have access to this content.