The authors report on the first experimental characterization of a fiber tip-based electron source, where electron emission can be triggered by both electric field and optical excitation. Our approach consists of coating the open aperture of a commercial 100 nm apex size near-field scanning optical microscopy fiber tip with a 10 nm thick tungsten (W) layer, which is back-illuminated by a 405 nm continuous-wave laser beam in the presence of an extraction electric field. Despite the very low optical transmission of the fiber due to the subwavelength aperture size, measurements show a clearly enhanced emission when photoexciting the W layer with respect to pure field emission. The emission response time is slower than the optical trigger time, suggesting that thermal effects are predominant in the studied regime. To back up this hypothesis, the authors fabricated a nanometric thermocouple probe based on a Pt/Au junction and measured the temporal response of the tip temperature. The measured switch-on time for the tip temperature is consistent with the switch-on time of the optically enhanced electron emission.

1.
R. J. Dwayne
Miller
,
Annu. Rev. Phys. Chem.
65
,
583
(
2014
).
2.
R. J. Dwayne
Miller
,
Science
343
,
1108
(
2014
).
3.
J. B.
Siwick
,
J. R.
Dwyer
,
R. E.
Jordan
, and
R. J. Dwayne
Miller
,
Science
302
,
1382
(
2003
).
5.
W. E.
King
,
G. H.
Campbell
,
A.
Frank
,
B.
Reed
,
J. F.
Schmerge
,
B.
Siwick
,
B. C.
Stuart
, and
P. M.
Weber
,
J. Appl. Phys.
97
,
111101
(
2005
).
6.
L.
Piazza
,
D. J.
Masiel
,
T.
LaGrange
,
B. W.
Reed
,
B.
Barwick
, and
F.
Carbone
,
Chem. Phys.
423
,
79
(
2013
).
7.
C. A.
Brau
,
Nucl. Instrum. Methods Phys. Res., A
407
,
1
(
1998
).
8.
C. M.
Tang
,
A. C.
Ting
, and
T.
Swyden
,
Nucl. Instrum. Methods Phys. Res., A
318
,
353
(
1992
).
9.
F. O.
Kirchner
,
S.
Lahme
,
F.
Krausz
, and
P.
Baum
,
New J. Phys.
15
,
63021
(
2013
).
10.
M. J. G.
Lee
,
Phys. Rev. Lett.
30
,
1193
(
1973
).
11.
P.
Hommelhoff
,
Y.
Sortais
,
A.
Aghajani-Talesh
, and
M.
Kasevich
,
Phys. Rev. Lett.
96
,
77401
(
2006
).
12.
P.
Hommelhoff
,
C.
Kealhofer
, and
M.
Kasevich
,
Phys. Rev. Lett.
97
,
247402
(
2006
).
13.
C.
Ropers
,
D. R.
Solli
,
C. P.
Schulz
,
C.
Lienau
, and
T.
Elsaesser
,
Phys. Rev. Lett.
98
,
43907
(
2007
).
14.
J.
Hoffrogge
,
J. P.
Stein
,
M.
Krüger
,
M.
Förster
,
J.
Hammer
,
D.
Ehberger
,
P.
Baum
, and
P.
Hommelhoff
,
J. Appl. Phys.
115
,
94506
(
2014
).
15.
R.
Ganter
 et al.,
Phys. Rev. Lett.
100
,
064801
(
2008
).
16.
H.
Yanagisawa
,
C.
Hafner
,
P.
Doná
,
M.
Klöckner
,
D.
Leuenberger
,
T.
Greber
,
M.
Hengsberger
, and
J.
Osterwalder
,
Phys. Rev. Lett.
103
,
257603
(
2009
).
17.
H.
Yanagisawa
,
M.
Hengsberger
,
D.
Leuenberger
,
M.
Klöckner
,
C.
Hafner
,
T.
Greber
, and
J.
Osterwalder
,
Phys. Rev. Lett.
107
,
087601
(
2011
).
18.
B.
Barwick
,
C.
Corder
,
J.
Strohaber
,
N.
Chandler-Smith
,
C.
Uiterwaal
, and
H.
Batelaan
,
New J. Phys.
9
,
142
(
2007
).
19.
A.
Paarmann
 et al.,
J. Appl. Phys.
112
,
113109
(
2012
).
20.
G.
Sciani
and
R. J. Dwayne
Miller
,
Rep. Prog. Phys.
74
,
096101
(
2011
).
21.
S.
Tsujino
,
P.
Beaud
,
E.
Kirk
,
T.
Vogel
,
H.
Sehr
,
J.
Gobrecht
, and
A.
Wrulich
,
Appl. Phys. Lett.
92
,
193501
(
2008
).
22.
A.
Mustonen
,
P.
Beaud
,
E.
Kirk
,
T.
Feurer
, and
S.
Tsujino
,
Appl. Phys. Lett.
99
,
103504
(
2011
).
23.
P.
Helfenstein
,
A.
Mustonen
, and
S.
Tsujino
,
Appl. Phys. Express
6
,
114301
(
2013
).
24.
A.
Mustonen
,
V.
Guzenko
,
C.
Spreu
,
T.
Feurer
, and
S.
Tsujino
,
Nanotechnology
25
,
085203
(
2014
).
25.
S.
Tsujino
,
M.
Paraliev
,
E.
Kirk
,
C.
Gough
,
S.
Ivkovic
, and
H. H.
Braun
,
Phys. Plasmas
18
,
64502
(
2011
).
26.
A. L.
Lereu
,
A.
Passian
, and
Ph.
Dumas
,
Int. J. Nanotechnol.
9
,
488
(
2012
).
27.
T.
Vecchione
,
U.
Weierstall
,
C.
Edgcombe
, and
J. C. H.
Spence
,
Microsc. Microanal.
12
,
146
(
2006
).
28.
R.
Forbes
,
Appl. Phys. Lett.
89
,
113122
(
2006
).
29.
R.
Forbes
and
K.
Jensen
,
Ultramicroscopy
89
,
17
(
2001
).
30.
R.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London
119
,
173
(
1928
).
31.
K.
Jensen
,
J. Vac. Sci. Technol. B
21
,
1528
(
2003
).
32.
E.
Murphy
and
R.
Good
,
Phys. Rev.
102
,
1464
(
1956
).
33.
K.
Jensen
and
M.
Cahay
,
Appl. Phys. Lett.
88
,
154105
(
2006
).
34.
X.
He
,
J.
Scharer
,
J.
Booske
, and
S.
Sengele
,
J. Vac. Sci. Technol., B
26
,
770
(
2008
).
35.
Clemens J. M.
Lasance
, “
The Seebeck Coefficient
,” accessed November 11, 2014, http://www.electronics-cooling.com/2006/11/the-seebeck-coefficient.
36.
K. L.
Jensen
,
J. Appl. Phys.
102
,
024911
(
2007
).
You do not currently have access to this content.