Analysis of structural and luminescence properties of GaAsN epilayers grown by molecular beam epitaxy (MBE) and chemical beam epitaxy on GaAs (001) substrates indicates the possibility of fabricating high nitrogen content (x > 0.03) alloys. The conventional plasma source design where nitrogen flux is controlled using a manual shutter was first implemented. Investigation of structural and optical properties by photoluminescence, high-resolution x-ray diffraction, secondary-ion mass spectrometry, and electron microscopy indicated the presence of thin parasitic layers formed during nitrogen plasma ignition, as well as significant N contamination of GaAs barrier layers, which could severely affect carrier extraction and transport properties in targeted devices. In order to overcome these limitations, a gate-valve-activated run-vent design was implemented that allowed the plasma to operate continuously during MBE growth, while N plasma flux changes during growth were monitored. The potential of this design for achieving very sharp switching schemes compatible with the fabrication of complex dilute-nitride quantum well structures, while preventing N contamination of GaAs barriers, was demonstrated.

1.
J. F.
Geisz
and
D. J.
Freidman
,
Semicond. Sci. Technol.
17
,
769
(
2002
).
2.
M. A.
Green
,
K.
Emery
,
D. L.
King
,
Y.
Hishikawa
, and
W.
Warta
,
Prog. Photovoltaics: Res. Appl.
21
,
1
(
2013
).
3.
A.
Freundlich
,
A.
Fotkatzikis
,
L.
Bhusal
,
L.
Williams
,
A.
Alemu
,
W.
Zhu
,
J. A. H.
Coaquira
,
A.
Feltrin
, and
G.
Radhakrishnan
,
J. Vac. Sci. Technol., B
25
,
987
(
2007
).
4.
A.
Alemu
and
A.
Freundlich
,
IEEE J. Photovoltaics
2
,
256
(
2012
).
5.
I.
Aksenov
,
H.
Iwai
, and
Y.
Nakada
,
J. Vac. Sci. Technol., B
17
,
1525
(
1999
).
6.
H.
Dumont
,
L.
Auvray
,
J.
Dazord
,
Y.
Monteil
,
C.
Bondoux
, and
G.
Patriarch
,
J. Cryst. Growth
248
,
441
(
2003
).
7.
M.-A.
Pinault
and
E.
Tournie
,
Appl. Phys. Lett.
78
,
1562
(
2001
).
8.
M. M.
Oye
 et al.,
Appl. Phys. Lett.
91
,
191903
(
2007
).
9.
B.
Usher
,
T.
Warminski
,
T.
Dieing
, and
K.
Prince
, “
High temperature growth of the dilute nitride GaAsN using a nitrogen ECR plasma source
,”
International Conference on Nanoscience and Nanotechnology
,
Brisbane
,
Australia
, 3–7 July (IEEE, 2006), Vol. 1–2, pp.
537
540
.
10.
S. Z.
Wang
,
S. F.
Yoon
,
T. K.
Ng
,
W. K.
Loke
, and
W. J.
Fan
,
J. Cryst. Growth
242
,
87
(
2002
).
11.
I. A.
Buyanova
,
W. M.
Chen
,
B.
Monemar
,
H. P.
Xin
, and
C. W.
Tu
,
Appl. Phys. Lett.
75
,
3781
(
1999
).
12.
M.
Fischer
,
D.
Gollub
,
M.
Reinhardt
,
M.
Kamp
, and
A.
Forchel
,
J. Cryst. Growth
251
,
353
(
2003
).
13.
S. Z.
Wang
,
S. F.
Yoon
, and
W. K.
Loke
,
J. Appl. Phys.
94
,
2662
(
2003
).
14.
M. A.
Wistey
,
S. R.
Bank
,
H. B.
Yuen
,
L. L.
Goddard
,
T.
Gugov
, and
J. S.
Harris
, Jr.
,
J. Vac. Sci. Technol., B
23
,
1324
(
2005
).
15.
S. F.
Yoon
,
K. H.
Tan
,
W. K.
Loke
,
S.
Wicaksono
, and
T. K.
Ng
, U.S. patent 8202788 B2 (19 June 2012).
16.
I. P.
Soshnikov
 et al.,
Semicond. Sci. Technol.
19
,
501
(
2004
).
17.
A.
Fotkatzikis
and
A.
Freundlich
,
J. Vac. Sci. Technol., B
24
,
1536
(
2006
).
18.
Yu.
Kudriavtsev
,
A.
Villegas
,
A.
Godines
,
P.
Ecker
,
R.
Asomoza
,
S.
Nikishin
,
C.
Jin
,
N.
Faleev
, and
H.
Temkin
,
Surf. Interface Anal.
29
,
399
(
2000
).
19.
E. V. K.
Rao
,
A.
Ougazzaden
,
Y.
Le Bellego
, and
M.
Juhel
,
Appl. Phys. Lett.
72
,
1409
(
1998
).
20.
L. H.
Li
,
Z.
Pan
,
W.
Zhang
,
Y. W.
Lin
,
Z. Q.
Zhou
, and
R. H.
Wu
,
J. Appl. Phys.
87
,
245
(
2000
).
You do not currently have access to this content.