It has been proposed that the use of gated field emitters with a faceted cathode in place of the conventional thermionic cathode could be used to control the current injection in a magnetron, both temporally and spatially. In this work, this concept is studied using the particle-in-cell code VORPAL. The magnetron studied is a ten-cavity, rising sun magnetron, which can be modeled easily using a 2D simulation. The magnetron has a ten-sided faceted cathode. The electrons are injected from three emitter elements on each of the ten facets. Each emitter is turned ON and OFF in sequence at the oscillating frequency with five emitter elements ON at once to obtain the five electron spokes of the π-mode. The simulation results show that the modulated, addressable cathode reduces startup time from 100 to 35 ns, increases the power density, controls the RF phase, and allows active phase control during oscillation.

1.
G. B.
Collins
,
Microwave Magnetrons.
(
McGraw-Hill
,
New York
,
1948
).
2.
R. J.
Barker
,
J. H.
Booske
,
N. C.
Luhmann
, and
G. S.
Nusinovich
,
Modern Microwave and Millimeter-Wave Power Electronics
(
John Wiley & Sons, Inc.
,
Piscataway, NJ
,
2005
).
3.
D.
French
,
Investigation of Novel Configurations for High Power Microwave Generation
(
University of Michigan
,
Ann Arbor, MI
,
2011
).
4.
J. M.
Osepchuk
,
IEEE Trans. Microwave Theory
50
,
975
(
2002
).
5.
S. Y.
Liao
,
Microwave Electron-Tube Devices
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1988
).
7.
C.
Dexter
,
G.
Burt
,
R. G.
Carter
,
I.
Tahir
,
H.
Wang
,
K.
Davis
, and
R.
Rimmer
,
Phys. Rev. Special Topics - Acc. Beams
14
,
032001
(
2011
).
8.
X.
Chen
,
M.
Esterson
, and
P. A.
Lindsay
,
Proc. SPIE
2843
,
47
(
1996
).
9.
E. J.
Cruz
,
Peer-to Peer Magnetron Locking
(
University of Michigan
,
Ann Arbor, MI
,
2011
).
10.
I. M.
Rittersdorf
,
Y. Y.
Lau
,
J. C.
Zier
,
R. M.
Gilgenbach
,
E. J.
Cruz
, and
J. W.
Luginsland
,
Appl. Phys. Lett.
97
,
171502
(
2010
).
11.
J.
Browning
,
S.
Fernandez-Gutierrez
,
M. C.
Lin
,
D. N.
Smithe
, and
J.
Watrous
,
Appl. Phys. Lett.
104
,
233507
(
2014
).
12.
M.
Fuks
and
E.
Schamiloglu
,
Phys. Rev. Lett.
95
,
205101
(
2005
).
13.
D. A.
Shiffler
,
M.
Ruebush
,
M.
LaCour
,
K.
Golby
,
R.
Umstattd
,
M. C.
Clark
,
J. W.
Luginsland
,
D.
Zagar
, and
M.
Sena
,
Appl. Phys. Lett.
79
,
2871
(
2001
).
14.
M. A.
Kopot
,
V. D.
Yeryomka
, and
V. P.
Dzyuba
,
IEEE International Conference on Vacuum Electronics (IVEC)
(
2006
), pp.
351
353
.
15.
N. I.
Avtomonov
,
D. M.
Vavriv
, and
S. V.
Sosnytsky
,
Radio. Comm. Syst.
53
,
1
(
2010
).
16.
S. G.
Bandy
,
C.
Spindt
,
M. A.
Hollis
,
W. D.
Palmer
,
B.
Goplen
, and
E. G.
Wintucky
,
IEEE International Conference on Vacuum Microelectronics
(
1998
), pp. 132–133.
17.
J.
Browning
and
J.
Watrous
,
J. Vac. Sci. Technol. B
29
,
02B109
(
2011
).
18.
C.
Spindt
,
C.
Holland
, and
I.
Schwoebel
,
IEEE Electron Devices Meeting, IEDM '95
(
1995
), pp.
389
392
.
19.
D.
Temple
,
Mater. Sci. Eng., R
24
,
185
(
1999
).
20.
C.
Nieter
and
J. R.
Cary
,
J. Comput. Phys.
196
,
448
(
2004
).
21.
S.
Fernandez-Gutierrez
,
J.
Browning
,
M. C.
Lin
,
D. N.
Smithe
, and
J.
Watrous
,
J. Vac. Sci. Technol. B
32
,
061205
(
2014
).
22.
S.
Dey
and
R.
Mittra
,
IEEE Microwave Guided Wave Lett.
7
,
273
(
1997
).
23.
C.
Nieter
,
J. R.
Cary
,
G. R.
Werner
,
D.
Smithe
, and
P. H.
Stoltz
,
J. Comput. Phys.
228
,
7902
(
2009
).
24.
D.
Whaley
,
B.
Gannon
,
C. R.
Smith
,
C.
Armstrong
, and
C.
Spindt
,
IEEE Trans. Plasma Sci.
28
,
727
(
2000
).
25.
A.
Fomani
,
S. A.
Guerrera
,
L. F.
Velasquez-Garcia
, and
A. I.
Akinwande
,
IEEE Trans. Electron Devices
61
,
2538
(
2014
).
You do not currently have access to this content.