Large-scale fabrication of a TiO2 three-dimensional photonic crystal with simple cubic (SC) geometry was demonstrated using semiconductor-processing techniques in a layer-by-layer method. Full exposure of 100 mm double-side polished silicon and fused silica wafers was performed using deep-UV projection lithography with a 1 cm2 field size, and a four-layer TiO2/air crystal of lattice pitch a=450 nm was successfully realized. The authors have computed the iso-frequency surfaces (IFS) for this structure and for another, which is to be examined in a future work. The latter will consist of a TiO2 SC photonic crystal for which the air regions are filled in with luminescent material of refractive index n=1.5. The IFS indicate that our TiO2 photonic crystal is capable of supporting parallel-to-interface refraction modes for normalized frequency as high as 1.0, and that these modes will persist should the dielectric contrast be lowered via infiltration of the air region. For characterization, integrating sphere reflection measurements were performed, and the results are compared with those obtained from finite-difference time-domain simulation.

1.
A.
Mekis
,
J. C.
Chen
,
I.
Kurland
,
S.
Fan
,
P. R.
Villeneuve
, and
J. D.
Joannopoulos
,
Phys. Rev. Lett.
77
,
3787
(
1996
).
2.
S. Y.
Lin
,
E.
Chow
,
V.
Hietala
,
P. R.
Villeneuve
, and
J. D.
Joannopoulos
,
Science
282
,
274
(
1998
).
3.
E.
Chow
,
S. Y.
Lin
,
J. R.
Wendt
,
S. G.
Johnson
, and
J. D.
Joannopoulos
,
Opt. Lett.
26
,
286
(
2001
).
4.
O.
Painter
,
R. K.
Lee
,
A.
Scherer
,
A.
Yariv
,
J. D.
O'Brien
,
P. D.
Dapkus
, and
I.
Kim
,
Science
284
,
1819
(
1999
).
5.
T.
Tanabe
,
M.
Notomi
,
S.
Mitsugi
,
A.
Shinya
, and
E.
Kuramochi
,
Opt. Lett.
30
,
2575
(
2005
).
6.
X.
Hu
,
Y.
Liu
,
J.
Tian
,
B.
Cheng
, and
D.
Zhang
,
Appl. Phys. Lett.
86
,
121102
(
2005
).
7.
K. M.
Chen
,
A. W.
Sparks
,
H. C.
Luan
,
D. R.
Lim
,
K.
Wada
, and
L. C.
Kimerling
,
Appl. Phys. Lett.
75
,
3805
(
1999
).
8.
J. P.
Dowling
and
C. M.
Bowden
,
J. Mod. Opt.
41
,
345
(
1994
).
9.
S. Y.
Lin
,
V. M.
Hietala
,
L.
Wang
, and
E. D.
Jones
,
Opt. Lett.
21
,
1771
(
1996
).
10.
H.
Kosaka
,
T.
Kawashima
,
A.
Tomita
,
M.
Notomi
,
T.
Tamamura
,
T.
Sato
, and
S.
Kawakami
,
Phys. Rev. B
58
,
Rv10096
(
1998
).
11.
12.
C.
Luo
,
S. G.
Johnson
, and
J. D.
Joannopoulos
,
Phys. Rev. B
65
,
201104
(
2002
).
13.
J.
Witzens
,
M.
Lončar
, and
A.
Scherer
,
IEEE J. Quantum Electron.
8
,
1246
(
2002
).
14.
A.
Chutinan
,
N. P.
Kherani
, and
S.
Zukotynski
,
Opt. Express
17
,
8871
(
2009
).
15.
D.
Zhou
and
R.
Biswas
,
J. Appl. Phys.
103
,
093102
(
2008
).
16.
L.
Zeng
,
Y.
Yi
,
C. Y.
Hong
,
X.
Duan
, and
L. C.
Kimerling
, “
New light trapping in thin film solar cells using textured photonic crystals
,”
Materials Research Society Symposium Proceedings
(
Materials Research Society
,
Boston
, MA,
2005
), Vol.
862
.
17.
K.
Wada
,
L. C.
Kimerling
, and
N.
Toyoda
, U.S. patent 20,030,029,496 (13 February
2003
).
18.
Y.
Park
,
E.
Drouard
,
O.
El Daif
,
X.
Latartre
,
P.
Viktorovitch
,
A.
Fave
,
A.
Kaminski
,
M.
Lemiti
, and
C.
Seassal
,
Opt. Express
17
,
14312
(
2009
).
19.
S. B.
Mallick
,
M.
Agrawal
, and
P.
Peumans
,
Opt. Express
18
,
5691
(
2010
).
20.
A.
Deinega
,
S.
Eyderman
, and
S.
John
,
J. Appl. Phys.
113
,
224501
(
2013
).
21.
M. A.
Verschuuren
and
H. A.
Van Sprang
, U.S. patent 8,536,600 (17 September
2013
).
22.
M.
Boroditsky
,
T. F.
Krauss
,
R.
Coccioli
,
R.
Vrijen
,
R.
Bhat
, and
E.
Yablonovitch
,
Appl. Phys. Lett.
75
,
1036
(
1999
).
23.
J. J.
Wierer
,
M. R.
Krames
,
J. E.
Epler
,
N. F.
Gardner
,
M. G.
Craford
,
J. R.
Wendt
,
J. A.
Simmons
, and
M. M.
Sigalas
,
Appl. Phys. Lett.
84
,
3885
(
2004
).
24.
D. H.
Kim
 et al.,
Appl. Phys. Lett.
87
,
203508
(
2005
).
25.
T. N.
Oder
,
K. H.
Kim
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
84
,
466
(
2004
).
26.
T.
Kim
,
A. J.
Danner
, and
K. D.
Choquette
,
Electron. Lett.
41
,
1138
(
2005
).
27.
X. X.
Fu
 et al.,
Opt. Express
19
,
A1104
(
2011
).
28.
J. J.
Wierer
, Jr.
,
D.
Aurelien
, and
M. M.
Megens
,
Nat. Photonics
3
,
163
(
2009
).
29.
J. Y.
Kim
,
M. K.
Kwon
,
S. J.
Park
,
S. H.
Kim
, and
K. D.
Lee
,
Appl. Phys. Lett.
96
,
251103
(
2010
).
30.
A. A.
Erchak
,
D. J.
Ripin
,
S.
Fan
,
P.
Rakich
,
J. D.
Joannopoulos
,
E. P.
Ippen
,
G. S.
Petrich
, and
L. A.
Kolodziejski
,
Appl. Phys. Lett.
78
,
563
(
2001
).
31.
A.
Chutinan
and
S.
John
,
Phys. Rev. A
78
,
023825
(
2008
).
32.
G.
Demésy
and
S.
John
,
J. Appl. Phys.
112
,
074326
(
2012
).
33.
P.
Kuang
,
A.
Deinega
,
M. L.
Hsieh
,
S.
John
, and
S. Y.
Lin
,
Opt. Lett.
38
,
4200
(
2013
).
34.
G.
Subramania
,
Y. J.
Lee
,
A. J.
Fischer
, and
D. D.
Koleske
,
Adv. Mater.
22
,
487
(
2010
).
35.
A.
Frölich
,
J.
Fischer
,
T.
Zebrowski
,
K.
Busch
, and
M.
Wegener
,
Adv. Mater.
25
,
3588
(
2013
).
36.
J. S.
King
,
E.
Graugnard
, and
C. J.
Summers
,
Adv. Mater.
17
,
1010
(
2005
).
37.
R. C.
Schroden
,
M.
Al-Daous
,
C. F.
Blanford
, and
A.
Stein
,
Chem. Mater.
14
,
3305
(
2002
).
38.
S. G.
Park
,
T. Y.
Jeon
, and
S. M.
Yang
,
Langmuir
29
,
9620
(
2013
).
39.
M.
Scharrer
,
X.
Wu
,
A.
Yamilov
,
H.
Cao
, and
R. P. H.
Chang
,
Appl. Phys. Lett.
86
,
151113
(
2005
).
40.
K. M.
Huang
,
C. L.
Ho
,
H. J.
Chang
, and
M. C.
Wu
,
Nanoscale Res. Lett.
8
,
306
(
2013
).
41.
H.
Wang
,
K. P.
Yan
,
J.
Xie
, and
M.
Duan
,
Mater. Sci. Semicond. Process.
11
,
44
(
2008
).
42.
E. W.
Seelig
,
B.
Tang
,
A.
Yamilov
,
H.
Cao
, and
R. P. H.
Chang
,
Mater. Chem. Phys.
80
,
257
(
2003
).
43.
Y.
Nishijima
,
K.
Ueno
,
S.
Juodkazis
,
V.
Mezeikis
,
H.
Misawa
,
M.
Maeda
, and
M.
Minaki
,
Opt. Express
16
,
13676
(
2008
).
44.
F.
Li
,
S. A.
Delo
, and
A.
Stein
,
Angew. Chem. Int. Ed.
46
,
6666
(
2007
).
45.
M.
Campbell
,
D. N.
Sharp
,
M. T.
Harrison
,
R. G.
Denning
, and
A. J.
Turberfield
,
Nature
404
,
53
(
2000
).
46.
S. Y.
Lin
 et al.,
Nature
394
,
251
(
1998
).
47.
S. Y.
Lin
,
J. G.
Fleming
,
R.
Lin
,
M. M.
Sigalas
,
R.
Biswas
, and
K. M.
Ho
,
J. Opt. Soc. Am. B
18
,
32
(
2001
).
48.
V.
Mikhelashvili
and
G.
Eisenstein
,
J. Appl. Phys.
89
,
3256
(
2001
).
49.
S. G.
Johnson
and
J. D.
Joannopoulos
,
Opt. Express
8
,
173
(
2001
).
You do not currently have access to this content.