Atomic layer deposition-grown Al2O3 thin films are grown on n-type GaN and annealed at 300 or 500 °C in various atmospheres. Metal–insulator–semiconductor capacitors (MISCAPs) are used as simplified test structures for AlGaN/GaN heterostructure field effect transistors with an Al2O3 gate dielectric. Electrical characterization of the unannealed MISCAPs reveals a low leakage current density of ∼1.4 × 10−9 A/cm2 at −2 MV/cm. Annealing at 500 °C in N2 or a forming gas results in a degradation of this leakage level by more than one order of magnitude, whereas the leakage current of the Al2O3 films annealed at 500 °C in O2 is increased to ∼5.2 × 10−9 A/cm2 at −2 MV/cm. The photoassisted capacitance–voltage technique, the conductance method, and border trap analysis are used to study the influence of the annealing ambient atmosphere upon the Al2O3/GaN interface. For all atmospheres, thermal treatments at 500 °C marginally affects the border oxide trap density, but the forming gas anneal at 500 °C passivates the interface traps most efficiently. While the O2 thermal treatment reduces the interface trap density in the Al2O3/GaN system, the N2 anneal creates interface trap states, indicating the formation of an oxygen deficient defect level at the Al2O3/GaN interface during N2 annealing.

1.
J.
Robertson
and
B.
Falabretti
,
J. Appl. Phys.
100
,
014111
(
2006
).
2.
A.
Freese
,
M.
Grube
,
A.
Wachowiak
,
M.
Geidel
,
B.
Adolphi
,
S.
Schmult
, and
T.
Mikolajick
,
J. Vac. Sci. Technol., B
31
,
03C111
(
2013
).
3.
J.
Robertson
,
Rep. Prog. Phys.
69
,
327
(
2006
).
4.
B. L.
Swenson
and
U. K.
Mishra
,
J. Appl. Phys.
106
,
064902
(
2009
).
5.
R.
Yeluri
,
X.
Liu
,
B. L.
Swenson
,
J.
Lu
,
S.
Keller
, and
U. K.
Mishra
,
J. Appl. Phys.
114
,
083718
(
2013
).
6.
E. H.
Nicollian
and
A.
Goetzberger
,
Bell Syst. Tech. J.
46
,
1055
(
1967
).
7.
D. M.
Fleetwood
and
N. S.
Saks
,
J. Appl. Phys.
79
,
1583
(
1996
).
8.
K.
Köhler
,
S.
Müller
,
P.
Waltereit
,
L.
Kirste
,
H. P.
Menner
,
W.
Bronner
, and
R.
Quay
,
Phys. Status Solidi A
206
,
2652
(
2009
).
9.
M.
Miczek
,
C.
Mizue
,
T.
Hashizume
, and
B.
Adamowicz
,
J. Appl. Phys.
103
,
104510
(
2008
).
10.
D. M.
Fleetwood
,
IEEE Trans. Nucl. Sci.
39
,
269
(
1992
).
11.
E. H.
Nicollian
and
J. R.
Brews
,
MOS Physics and Technology
(
Wiley
,
New York
,
1982
).
12.
Z. H.
Liu
,
G. I.
Ng
,
S.
Arulkumaran
,
Y. K. T.
Maung
,
K. L.
Teo
,
S. C.
Foo
, and
V.
Sahmuganathan
,
Appl. Phys. Lett.
95
,
223501
(
2009
).
13.
Y. C.
Chang
,
M. L.
Huang
,
Y. H.
Chang
,
Y. J.
Lee
,
H. C.
Chiu
,
J.
Kwo
, and
M.
Hong
,
Microelectron. Eng.
88
,
1207
(
2011
).
14.
R. D.
Long
 et al.,
Appl. Phys. Lett.
103
,
201607
(
2013
).
15.
B.
Ealet
,
M. H.
Elyakhloufi
,
E.
Gillet
, and
M.
Ricci
,
Thin Solid Films
250
,
92
(
1994
).
16.
S.-C.
Ha
,
E.
Choi
,
S.-H.
Kim
, and
J. S.
Roh
,
Thin Solid Films
476
,
252
(
2005
).
17.
L.
Aarik
,
T.
Arroval
,
R.
Rammula
,
H.
Mändar
,
V.
Sammelselg
,
B.
Hudec
,
K.
Hušeková
,
K.
Fröhlich
, and
J.
Aarik
,
Thin Solid Films
565
,
19
(
2014
).
18.
A. C.
Kozen
,
M. A.
Schroeder
,
K. D.
Osborn
,
C. J.
Lobb
, and
G. W.
Rubloff
,
Appl. Phys. Lett.
102
,
173501
(
2013
).
19.
D. R.
Jennison
,
P. A.
Schultz
, and
J. P.
Sullivan
,
Phys. Rev. B
69
,
041405
(
2004
).
You do not currently have access to this content.