Scanning probes have enabled modern nanoscience and are still the backbone of today's nanotechnology. Within the technological development of AFM systems, the cantilever evolved from a simple passive deflection element to a complex microelectromechanical system through integration of functional groups, such as piezoresistive detection sensors and bimaterial based actuators. Herein, the authors show actual trends and developments of miniaturization efforts of both types of cantilevers, passive and active. The results go toward the reduction of dimensions. For example, the authors have fabricated passive cantilever with a width of 4 μm, a length of 6 μm and thickness of 50–100 nm, showing one order of magnitude lower noise levels. By using active cantilevers, direct patterning on calixarene is demonstrated employing a direct, development-less phenomena triggered by tip emitted low energy (<50 eV) electrons. The scanning probes are not only applied for lithography, but also for imaging and probing of the surface before and immediately after scanning probe patterning. In summary, piezoresistive probes are comparable to passive probes using optical read-out. They are able to routinely obtain atomic step resolution at a low thermal noise floor. The active cantilever technology offers a compact, integrated system suited for integration into a table-top scanning probe nanolithography tool.

3.
J. J.
Pla
,
K. Y.
Tan
,
J. P.
Dehollain
,
W. H.
Lim
,
J. J. L.
Morton
,
D. N.
Jamieson
,
A. S.
Dzurak
, and
A.
Morello
,
Nature
489
,
541
(
2012
).
4.
K. K.
Likharev
,
Proc. IEEE
87
,
606
(
1999
).
5.
W.
Zhang
,
A.
Thiess
,
P.
Zalden
,
R.
Zeller
,
P. H.
Dederichs
,
J.-Y.
Raty
,
M.
Wuttig
,
S.
Blügel
, and
R.
Mazzarello
,
Nat. Mater.
11
,
952
(
2012
).
6.
M.
Kaestner
and
I. W.
Rangelow
,
J. Vac. Sci. Technol., B
29
,
06FD02
(
2011
).
7.
M.
Kaestner
and
I. W.
Rangelow
,
Microelectron. Eng.
97
,
96
(
2012
).
8.
K.
Wilder
,
H. T.
Soh
,
A.
Atalar
, and
C. F.
Quate
,
J. Vac. Sci. Technol., B
15
,
1811
(
1997
).
9.
C. R. K.
Marrian
and
D. M.
Tennant
,
J. Vac. Sci. Technol., A
21
,
207
(
2003
).
10.
K.
Ivanova
 et al.,
J. Vac. Sci. Technol., B
26
,
2367
(
2008
).
11.
T.
Sulzbach
and
I. W.
Rangelow
, PRONANO:
Proceedings of the Integrated Project on Massively Parallel Intelligent Cantilever Probe Platforms for Nanoscale Analysis and Synthesis
, Monsenstein und Vannerdat, Auflage (
2010
), p.
1
.
12.
M.
Kaestner
,
M.
Hofer
, and
I. W.
Rangelow
,
J. Micro/Nanolithogr., MEMS, MOEMS
12
,
031111
(
2013
).
13.
P.
Vettiger
 et al.,
IEEE Trans. Nanotechnol.
1
,
39
(
2002
).
14.
D. A.
Walters
,
J. P.
Cleveland
,
N. H.
Thomson
,
P. K.
Hansma
,
M. A.
Wendman
,
G.
Gurley
, and
V.
Elings
,
Rev. Sci. Instrum.
67
,
3583
(
1996
).
15.
Y. L.
Lyubchenko
,
S. L.
Shlyakhtenko
, and
T.
Ando
,
Methods
54
,
274
(
2011
).
16.
T.
Sulchek
,
G. G.
Yaralioglu
,
C. F.
Quate
, and
S. C.
Minne
,
Rev. Sci. Instrum.
73
,
2928
(
2002
).
17.
T.
Sulchek
,
R.
Hsieh
,
J. D.
Adams
,
G. G.
Yaralioglu
,
S. C.
Minne
,
C. F.
Quate
,
J. P.
Cleveland
,
A.
Atalar
, and
D. M.
Adderton
,
Appl. Phys. Lett.
76
,
1473
(
2000
).
18.
J.
Fleming
,
B. J.
Kenton
, and
K. K.
Leang
,
Ultramicroscopy
110
,
1205
(
2010
).
19.
M. B.
Viani
,
T. E.
Schaffer
,
A.
Chand
,
M.
Rief
,
H. E.
Gaub
, and
P. K.
Hansma
,
J. Appl. Phys.
86
,
2258
(
1999
).
20.
N.
Vorbringer-Doroshovets
 et al.,
Proc. SPIE
8680
,
868018
(
2013
).
21.
G.
Binnig
, U.S. Patent No. 4,724,318 (4 August
1986
).
22.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
23.
G.
Binnig
,
H.
Rohrer
,
C.
Gerber
, and
E.
Weibel
,
Appl. Phys. Lett.
40
,
178
(
1982
).
24.
M.
Tortonese
,
R. C.
Barrett
, and
C. F.
Quate
,
Appl. Phys. Lett.
62
,
834
(
1993
).
25.
I. W.
Rangelow
,
S.
Skocki
, and
P.
Dumania
,
Microelectron. Eng.
23
,
365
(
1994
).
26.
T.
Gotszalk
,
P.
Grabiec
, and
I. W.
Rangelow
,
Ultramicroscopy
82
,
39
(
2000
).
27.
I. W.
Rangelow
,
F.
Shi
,
P.
Hudek
,
T.
Gotszalk
,
P. B.
Grabiec
, and
P.
Dumania
,
Proc. SPIE
2879
,
56
(
1996
).
28.
E. I.
Givargizov
,
A. N.
Stepanova
,
E. S.
Mashkova
,
V. A.
Molchanov
,
M. E.
Givargizov
, and
I. W.
Rangelow
,
Ultramicroscopy
82
,
57
(
2000
).
29.
I. W.
Rangelow
,
Microelectron. Eng.
83
,
1449
(
2006
).
30.
T.
Ivanov
,
T.
Gotszalk
,
T.
Sulzbach
, and
I. W.
Rangelow
,
Ultramicroscopy
97
,
377
(
2003
).
31.
T.
Michels
and
I. W.
Rangelow
,
Microelectron. Eng.
126
,
191
(
2014
).
32.
R.
Pedrak
 et al.,
J. Vac. Sci. Technol., B
21
,
3102
(
2003
).
33.
Y.
Kanda
,
IEEE Trans. Electron Devices
29
,
64
(
1982
).
34.
A. A.
Barlian
,
W. T.
Park
,
J. R.
Mallon
,
A. J.
Rastegar
, and
B. L.
Pruitt
,
Proc. IEEE
97
,
513
(
2009
).
35.
T.
Gotszalk
,
D.
Kopiec
,
A.
Sierakowski
,
P.
Janus
,
P.
Grabiec
, and
I. W.
Rangelow
,
Proc. SPIE
9236
,
92360A
(
2014
).
36.
I. W.
Rangelow
,
J. Vac. Sci. Technol., A
21
,
1550
(
2003
).
37.
G.
Jozwiak
,
D.
Kopiec
,
P.
Zawierucha
,
T.
Gotszalk
,
P.
Janus
,
P.
Grabiec
, and
I. W.
Rangelow
,
Sens. Actuators, B
170
,
201
(
2012
).
38.
I. W.
Rangelow
,
T.
Ivanov
,
Y.
Sarov
,
A.
Schuh
,
A.
Frank
,
H.
Hartmann
,
J.-P.
Zollner
,
D.
Olynick
, and
V.
Kalchenko
,
Proc. SPIE
7637
,
76370V
(
2010
).
39.
M.
Kaestner
and
I. W.
Rangelow
,
Proc. SPIE
8323
,
83231G
(
2012
).
40.
J.
Malo
and
J. I.
Izpura
,
Sens. Actuators, A
136
,
347
(
2007
).
41.
S. R.
Manalis
,
S. C.
Minne
, and
C. F.
Quate
,
Appl. Phys. Lett.
68
,
871
(
1996
).
You do not currently have access to this content.