Molybdenum disulfide (MoS2) two-dimensional nanostructures have been actively explored for ultrasmall transistors beyond graphene. The current prevailing methods for producing MoS2 devices involve multiple wet chemistry steps, which not only are time consuming, but may also unfavorably affect material quality and impair device performance through the chemical processes. Here, the authors report the first dry-transferred pristine MoS2 field-effect transistors (FETs) without any post-transfer lithographical and chemical processes, by using a facile, completely dry transfer technique with high throughput and high precision in alignment. The authors also show that the device performance can be greatly boosted by thermal annealing. Combining the dry-transfer technique with thermal annealing, the authors achieve MoS2 FETs with mobility up to 76 cm2/(V s) and on/off ratios exceeding 107. The authors further show how continued annealing cycles improve the MoS2 devices' conductance, mobility, on/off ratio, transconductance, threshold voltage, and contact quality.

1.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
(
2012
).
2.
D.
Jariwala
,
V. K.
Sangwan
,
L. J.
Lauhon
,
T. J.
Marks
, and
M. C.
Hersam
,
ACS Nano
8
,
1102
(
2014
).
3.
Y.
Yoon
,
K.
Ganapathi
, and
S.
Salahuddin
,
Nano Lett.
11
,
3768
(
2011
).
4.
R.
Ganatra
and
Q.
Zhang
,
ACS Nano
8
,
4074
(
2014
).
5.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
6.
B.
Radisavljevic
and
A.
Kis
,
Nat. Mater.
12
,
815
(
2013
).
7.
B. W. H.
Baugher
,
H. O. H.
Churchill
,
Y.
Yang
, and
P.
Jarillo-Herrero
,
Nano Lett.
13
,
4212
(
2013
).
8.
H.
Liu
,
M.
Si
,
Y.
Deng
,
A. T.
Neal
,
Y.
Du
,
S.
Najmaei
,
P. M.
Ajayan
,
J.
Lou
, and
P. D.
Ye
,
ACS Nano
8
,
1031
(
2014
).
9.
H.
Fang
,
M.
Tosun
,
G.
Seol
,
T. C.
Chang
,
K.
Takei
,
J.
Guo
, and
A.
Javey
,
Nano Lett.
13
,
1991
(
2013
).
10.
D.
Fu
,
J.
Zhou
,
S.
Tongay
,
K.
Liu
,
W.
Fan
,
T.-J. K.
Liu
, and
J.
Wu
,
Appl. Phys. Lett.
103
,
183105
(
2013
).
11.
B.
Radisavljevic
,
M. B.
Whitwick
, and
A.
Kis
,
ACS Nano
5
,
9934
(
2011
).
12.
H.
Wang
 et al,
IEEE Int. Electron Devices Meet.
2012
,
4.6.1
.
13.
H.
Wang
 et al,
Nano Lett.
12
,
4674
(
2012
).
14.
H.
Liu
,
A. T.
Neal
, and
P. D.
Ye
,
ACS Nano
6
,
8563
(
2012
).
15.
H.
Liu
and
P. D.
Ye
,
IEEE Electron Device Lett.
33
,
546
(
2012
).
16.
S.
Das
,
H.-Y.
Chen
,
A. V.
Penumatcha
, and
J.
Appenzeller
,
Nano Lett.
13
,
100
(
2013
).
17.
S.
Kim
 et al,
Nat. Commun.
3
,
1011
(
2012
).
18.
W. S.
Hwang
 et al,
Appl. Phys. Lett.
102
,
043116
(
2013
).
19.
W.
Liu
,
J.
Kang
,
W.
Cao
,
D.
Sarkar
,
Y.
Khatami
,
D.
Jena
, and
K.
Banerjee
,
IEEE Int. Electron Devices Meet.
2013
,
19.4.1
.
20.
W.
Bao
,
X.
Cai
,
D.
Kim
,
K.
Sridhara
, and
M. S.
Fuhrer
,
Appl. Phys. Lett.
102
,
042104
(
2013
).
21.
H.
Nam
,
S.
Wi
,
H.
Rokni
,
M.
Chen
,
G.
Priessnitz
,
W.
Lu
, and
X.
Liang
,
ACS Nano
7
,
5870
(
2013
).
22.
S.
Das
and
J.
Appenzeller
,
Phys. Status Solidi RRL
7
,
268
(
2013
).
23.
H.-Y.
Chang
,
S.
Yang
,
J.
Lee
,
L.
Tao
,
W.-S.
Hwang
,
D.
Jena
,
N.
Lu
, and
D.
Akinwande
,
ACS Nano
7
,
5446
(
2013
).
24.
J.
Lee
,
H.-Y.
Chang
,
T.-J.
Ha
,
H.
Li
,
R. S.
Ruoff
,
A.
Dodabalapur
, and
D.
Akinwande
,
IEEE Int. Electron Devices Meet.
2013
,
19.2.1
.
25.
D. J.
Late
 et al,
ACS Nano
7
,
4879
(
2013
).
26.
D.
Dumcenco
 et al, e-print arXiv:1405.0129.
27.
G.-H.
Lee
 et al,
ACS Nano
7
,
7931
(
2013
).
28.
S.-L.
Li
,
K.
Wakabayashi
,
Y.
Xu
,
S.
Nakaharai
,
K.
Komatsu
,
W.-W.
Li
,
Y.-F.
Lin
,
A.
Aparecido-Ferreira
, and
K.
Tsukagoshi
,
Nano Lett.
13
,
3546
(
2013
).
29.
Y.-C.
Lin
,
C.-C.
Lu
,
C.-H.
Yeh
,
C.
Jin
,
K.
Suenaga
, and
P.-W.
Chiu
,
Nano Lett.
12
,
414
(
2012
).
30.
A. G. F.
Garcia
,
M.
Neumann
,
F.
Amet
,
J. R.
Williams
,
K.
Watanabe
,
T.
Taniguchi
, and
D.
Goldhaber-Gordon
,
Nano Lett.
12
,
4449
(
2012
).
31.
W. S.
Leong
,
C. T.
Nai
, and
J. T. L.
Thong
,
Nano Lett.
14
,
3840
(
2014
).
32.
H.
Qiu
,
L.
Pan
,
Z.
Yao
,
J.
Li
,
Y.
Shi
, and
X.
Wang
,
Appl. Phys. Lett.
100
,
123104
(
2012
).
33.
D.
Ovchinnikov
,
A.
Allain
,
Y.-S.
Huang
,
D.
Dumcenco
, and
A.
Kis
,
ACS Nano
8
,
8174
(
2014
).
34.
Z.
Cheng
,
Q.
Zhou
,
C.
Wang
,
Q.
Li
,
C.
Wang
, and
Y.
Fang
,
Nano Lett.
11
,
767
(
2011
).
35.
D.
Jariwala
,
V. K.
Sangwan
,
D. J.
Late
,
J. E.
Johns
,
V. P.
Dravid
,
T. J.
Marks
,
L. J.
Lauhon
, and
M. C.
Hersam
,
Appl. Phys. Lett.
102
,
173107
(
2013
).
36.
G. A.
Somorjai
and
Y.
Li
,
Introduction to Surface Chemistry and Catalysis
(
Wiley
,
New York
,
2010
).
37.
Y. C.
Kim
and
M.
Boudart
,
Langmuir
7
,
2999
(
1991
).
38.
V. M.
Gun'ko
,
V. I.
Zarko
,
B. A.
Chuikov
,
V. V.
Dudnik
,
Y. G.
Ptushinskii
,
E. F.
Voronin
,
E. M.
Pakhlov
, and
A. A.
Chuiko
,
Int. J. Mass Spectrom.
172
,
161
(
1998
).
39.
R.
Yang
,
Z.
Wang
, and
P. X.-L.
Feng
,
Nanoscale
6
,
12383
(
2014
).
You do not currently have access to this content.