Modern buildings often have large windows and glass facades in order to achieve good day-lighting and desirable indoors–outdoors contact. These glazings are challenging with regard to the buildings' energy efficiency and frequently let in or out too much energy; this phenomenon has to be balanced by energy guzzling cooling or heating. In particular, the cooling requirement has grown strongly in recent years. Chromogenic glazings, based on thermochromism or electrochromism, are emerging technologies that can regulate the inflow of visible light and solar energy between widely separated limits and create better energy efficiency than is possible with static solutions. Thermochromic thin films—in practice based on vanadium dioxide—have a transmittance of infrared solar radiation that is smaller at high temperature than at low temperature. Electrochromic multilayer structures—often incorporating nanoporous thin films of tungsten oxide and nickel oxide—are able to vary the transmittance of visible light and solar energy when a low voltage is applied for a short time so as to shuttle charge between the two oxide films. Furthermore, and importantly, the new chromogenic fenestration technologies are able to improve indoor comfort. This brief tutorial review surveys the fields of oxide-based thermochromics and electrochromics with particular attention to recent advances.

1.
NOAA, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Earthscan System Research Laboratory, Global Monitoring Division, http://www.esrl.noaa.gov/gmd/ccgg/trends/index.html.
2.
Intergovernmental Panel on Climatic Change (
2014
), https://www.ipcc.ch.
3.
UNEP
,
Buildings and Climate Change: Challenges and Opportunities
(
United Nations Environmental Programme
,
Paris, France
,
2007
).
4.
2011 Buildings Energy Data Book
(
U.S. Department of Energy
,
Washington, DC
,
2012
), http://buildingsdatabook.eere.energy.gov/
.
5.
B.
Richter
 et al.,
Rev. Mod. Phys.
80
,
S1
(
2008
).
6.
G. B.
Smith
and
C. G.
Granqvist
,
Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment
(
CRC
,
Boca Raton, FL
,
2010
).
7.
Nanotechnology in Eco-Efficient Construction
, edited by
F.
Pacheco-Torgal
,
M. V.
Diamanti
,
A.
Nazari
, and
C. G.
Granqvist
(
Woodhead
,
Cambridge, UK
,
2013
).
8.
Nearly Zero Energy Building Refurbishment
, edited by
F. Pacheco
Torgal
,
M.
Mistretta
,
A.
Kaklauskas
,
C. G.
Granqvist
, and
L. F.
Cabeza
(
Springer
,
Berlin Heidelberg, Germany
,
2013
).
9.
Eco-Efficient Materials for Mitigating Building Cooling Needs
, edited by
F.
Pacheco-Torgal
,
J.
Labrincha
,
L. F.
Cabeza
, and
C. G.
Granqvist
(
Woodhead
,
Cambridge, UK
,
2014
).
10.
C. G.
Granqvist
,
Crit. Rev. Solid State Phys. Mater. Sci.
16
,
291
(
1990
).
11.
Large-Area
Chromogenics: Materials and Devices for Transmittance Control
, SPIE Institutes for Advanced Optical Technologies Vol.
4
, edited by
C. M.
Lampert
and
C. G.
Granqvist
(
SPIE Optical Engineering
,
Bellingham, WA
,
1990
).
12.
G. V.
Jorgenson
and
J. C.
Lee
,
Sol. Energy Mater.
14
,
205
(
1986
).
13.
S. M.
Babulanam
,
T. S.
Eriksson
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
Sol. Energy Mater. Sol. Cells
16
,
347
(
1987
).
14.
C. M.
Lampert
,
Sol. Energy Mater.
11
,
1
(
1984
).
15.
J. S. E. M.
Svensson
and
C. G.
Granqvist
,
Sol. Energy Mater.
11
,
29
(
1984
).
16.
C. G.
Granqvist
,
Sol. Energy Mater. Sol. Cells
99
,
1
(
2012
).
17.
C. G.
Granqvist
,
Thin Solid Films
564
,
1
(
2014
).
18.
B. P.
Jelle
,
A.
Hynd
,
A.
Gustavsen
,
D.
Arasteh
,
H.
Goudey
, and
R.
Hart
,
Sol. Energy Mater. Sol. Cells
96
,
1
(
2012
).
19.
B. P.
Jelle
,
Sol. Energy Mater. Sol. Cells
116
,
291
(
2013
).
20.
A.
Azens
and
C. G.
Granqvist
,
J. Solid State Electrochem.
7
,
64
(
2003
).
21.
E. S.
Lee
 et al.,
Advancement of Electrochromic Windows
(
California Energy Commission
,
Pier, CA
,
2006
).
22.
E. S.
Lee
,
D. L.
DiBartolomeo
, and
S. E.
Selkowitz
,
Energy Build.
38
,
30
(
2006
).
23.
M.
Pittaluga
, in
Eco-Efficient Materials for Mitigating Building Cooling Needs: Design, Properties and Applications
, edited by
F.
Pacheco-Torgal
,
J.
Labrincha
,
L. F.
Cabeza
, and
C. G.
Granqvist
(
Woodhead
,
Cambridge, UK
,
2014
).
24.
R. D.
Clear
,
V.
Inkarojrit
, and
E. S.
Lee
,
Energy Build.
38
,
758
(
2006
).
26.
P.
Eichholtz
,
N.
Kok
, and
J. M.
Quigley
,
Am. Econ. Rev.
100
,
2492
(
2010
).
27.
Y.
Gao
,
H.
Luo
,
Z.
Zhang
,
L.
Kang
,
Z.
Chen
,
J.
Du
,
M.
Kanehira
, and
C.
Cao
,
Nano Energy
1
,
221
(
2012
).
28.
S.
Hoffmann
,
E. S.
Lee
, and
C.
Clavero
,
Sol. Energy Mater. Sol. Cells
123
,
65
(
2014
).
29.
S.-Y.
Li.
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
J. Appl. Phys.
115
,
053513
(
2014
).
30.
M. E. A.
Warwick
and
R.
Binions
,
J. Mater. Chem. A
2
,
3275
(
2014
).
31.
Freedonia Group, World Flat Glass to 2016: Industry Market Research, Market Share, Market Size, Sales, Demand Forecast, Market Leaders, Company Profiles, Industry Trends (The Freedonia Group, Cleveland, OH,
2013
), http://www.freedoniagroup.com/World-Flat-Glass.html.
32.
G.
Wyszecki
and
W. S.
Stiles
,
Color Science: Concepts and Methods, Quantitative Data and Formulae
, 2nd ed. (
Wiley
,
New York
,
2000
).
33.
ASTM G173-03 Standard Tables of Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on a 37° Tilted Surface
, in
Annual Book of ASTM Standards
(
American Society for Testing and Materials
,
Philadelphia, PA
,
2008
), Vol.
14.04
, http://rredc.nrel.gov/solar/spectra/am1.5.
34.
M. M.
Qazilbash
 et al.,
Phys. Rev. B
83
,
165108
(
2011
).
35.
A. S.
Belozerov
,
M. A.
Korotin
,
V. I.
Anisimov
, and
A. I.
Poteryaev
,
Phys. Rev. B
85
,
045109
(
2012
).
36.
J. S.
Lee
,
K.
Shibuya
,
M.
Kawasaki
, and
Y.
Tokura
,
Phys. Rev. B
85
,
155110
(
2012
).
37.
38.
A.
Pergament
and
G.
Stefanovich
,
Phase Transitions
85
,
185
(
2012
).
39.
C.
Si
 et al.,
Phys. Chem. Chem. Phys.
14
,
15021
(
2012
).
40.
Z.
Tao
,
T.-R. T.
Han
,
S. D.
Mahanti
,
P. M.
Duxbury
,
F.
Yuan
, and
C.-Y.
Ruan
,
Phys. Rev. Lett.
109
,
166406
(
2012
).
41.
X.
Zhong
,
P.
LeClair
,
S. K.
Sarker
, and
A.
Gupta
,
Phys. Rev. B
86
,
094114
(
2012
).
42.
J. H.
Park
,
J. M.
Coy
,
T. S.
Kasirga
,
C.
Huang
,
Z.
Fei
,
S.
Hunter
, and
D. H.
Cobden
,
Nature
500
,
431
(
2013
).
43.
F. J.
Morin
,
Phys. Rev. Lett.
3
,
34
(
1959
).
44.
S.-Y.
Li
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
Thin Solid Films
520
,
3823
(
2012
).
45.
A.
Taylor
,
I.
Parkin
 I
,
N.
Noor
,
C.
Tummeltshammer
,
M. S.
Brown
, and
I.
Papakonstantinou
,
Opt. Express
21
,
A750
(
2013
).
46.
M.
Saeli
,
C.
Piccirillo
,
I. P.
Parkin
,
R.
Binions
, and
I.
Ridley
,
Energy Build.
42
,
1666
(
2010
).
47.
M.
Saeli
,
C.
Piccirillo
,
I. P.
Parkin
,
I.
Ridley
, and
R.
Binions
,
Sol. Energy Mater. Sol. Cells
94
,
141
(
2010
).
48.
J. B.
Goodenough
,
J. Solid State Chem.
3
,
490
(
1971
).
49.
N. R.
Mlyuka
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
Appl. Phys. Lett.
95
,
171909
(
2009
).
50.
M.
Jiang
,
S.
Bao
,
X.
Cao
,
Y.
Li
,
S.
Li
,
H.
Zhou
,
H.
Luo
, and
P.
Jin
,
Ceram. Int.
40
,
6331
(
2014
).
51.
K. A.
Khan
and
C. G.
Granqvist
,
Appl. Phys. Lett.
55
,
4
(
1989
).
52.
W.
Burkhardt
,
T.
Christmann
,
S.
Franke
,
W.
Kriegseis
,
D.
Meister
,
B. K.
Meyer
,
W.
Niessner
,
D.
Schalch
, and
A.
Scharmann
,
Thin Solid Films
402
,
226
(
2002
).
53.
P.
Kiri
,
M. E. A.
Warwick
,
I.
Ridley
, and
R.
Binions
,
Thin Solid Films
520
,
1363
(
2011
).
54.
S.-Y.
Li
,
N. R.
Mlyuka
,
D.
Primetzhofer
,
A.
Hallén
,
G.
Possnert
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
Appl. Phys. Lett.
103
,
161907
(
2013
).
55.
S.
Hu
,
S.-Y.
Li
,
R.
Ahuja
,
C. G.
Granqvist
,
K.
Hermansson
,
G. A.
Niklasson
, and
R. H.
Scheicher
,
Appl. Phys. Lett.
101
,
201902
(
2012
).
56.
S.-Y.
Li
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
J. Appl. Phys.
108
,
063525
(
2010
).
57.
S.-Y.
Li
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
J. Appl. Phys.
109
,
113515
(
2011
).
58.
K.
Laaksonen
,
S.-Y.
Li
,
S. R.
Puisto
,
N. K. J.
Rostedt
,
T.
Ala-Nissila
,
C. G.
Granqvist
,
R. M.
Nieminen
, and
G. A.
Niklasson
,
Sol. Energy Mater. Sol. Cells
130
,
132
(
2014
).
59.
R.
Lopez
,
T. E.
Haynes
,
L. A.
Boatner
,
L. C.
Feldman
, and
R. F.
Haglund
, Jr.
,
Opt. Lett.
27
,
1327
(
2002
).
60.
J.
Zhou
 et al.,
Phys. Chem. Chem. Phys.
15
,
7505
(
2013
).
61.
S.-Y.
Li
,
K.
Namura
,
M.
Suzuki
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
J. Appl. Phys.
114
,
033516
(
2013
).
62.
J.
Montero
,
private communication
(1 July
2014
).
63.
N. R.
Mlyuka
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
Phys. Status Solidi A
206
,
2155
(
2009
).
64.
Z.
Chen
,
Y.
Gao
,
L.
Kang
,
J.
Du
,
Z.
Zhang
,
H.
Luo
,
H.
Miao
, and
G.
Tan
,
Sol. Energy Mater. Sol. Cells
95
,
2677
(
2011
).
65.
H. A.
Wriedt
,
Bull. Alloy Phase Diagrams
10
,
271
(
1989
).
66.
Y.-X.
Ji
,
S.-Y.
Li
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
Thin Solid Films
562
,
568
(
2014
).
67.
A.
Talledo
and
C. G.
Granqvist
,
J. Appl. Phys.
77
,
4655
(
1995
).
68.
I.
Lykissa
,
S.-Y.
Li
,
M.
Ramzan
,
S.
Chakraborty
,
R.
Ahuja
,
C. G.
Granqvist
, and
G. A.
Niklasson
,
J. Appl. Phys.
115
,
183701
(
2014
).
69.
S.
Li
,
Y.
Li
,
M.
Jiang
,
S.
Ji
,
H.
Luo
,
Y.
Gao
, and
P.
Jin
,
ACS Appl. Mater. Interfaces
5
,
6453
(
2013
).
70.
Y.
Li
,
S.
Ji
,
Y.
Gao
,
H.
Luo
, and
P.
Jin
,
ACS Appl. Mater. Interfaces
5
,
6603
(
2013
).
71.
R.
Baetens
,
B. P.
Jelle
, and
A.
Gustavsen
,
Sol. Energy Mater. Sol. Cells
94
,
87
(
2010
).
72.
E. S.
Lee
,
E. S.
Claybaugh
, and
M.
LaFrance
,
Energy Build.
47
,
267
(
2012
).
73.
P. F.
Tavares
,
A. R.
Gaspar
,
A. G.
Martins
, and
F.
Frontini
,
Energy Policy
67
,
68
(
2014
).
74.
C. G.
Granqvist
,
Handbook of Inorganic Electrochromic Materials
(
Elsevier
,
Amsterdam, The Netherlands
,
1995
).
75.
İ. Bayrak
Pehlivan
,
R.
Marsal
,
E.
Pehlivan
,
E. L.
Runnerstrom
,
D. J.
Milliron
,
C. G.
Granqvist
, and
G. A.
Niklasson
,
Sol. Energy Mater. Sol. Cells
126
,
241
(
2014
).
76.
A.
Azens
,
G.
Vaivars
,
M.
Veszelei
,
L.
Kullman
, and
C. G.
Granqvist
,
J. Appl. Phys.
89
,
7885
(
2001
).
77.
G. A.
Niklasson
and
C. G.
Granqvist
,
J. Mater. Chem.
17
,
127
(
2007
).
78.
C. G.
Granqvist
,
Sol. Energy Mater. Sol. Cells
91
,
1529
(
2007
).
79.
I.
Hamberg
 I
and
C. G.
Granqvist
,
J. Appl. Phys.
60
,
R123
(
1986
).
80.
C. M.
Lampert
,
Sol. Energy Mater. Sol. Cells
76
,
489
(
2003
).
81.
C. G.
Granqvist
,
Reactive Sputter Deposition
, Springer Series in Materials Science Vol.
109
, edited by
D.
Depla
and
S.
Mahieu
(
Springer
,
Berlin Heidelberg, Germany
,
2008
), pp.
485
495
.
82.
C. G.
Granqvist
 et al.,
Thin Solid Films
516
,
5921
(
2008
).
83.
C. G.
Granqvist
,
S.
Green
,
G. A.
Niklasson
,
N. R.
Mlyuka
,
S.
von Kræmer
, and
P.
Georén
,
Thin Solid Films
518
,
3046
(
2010
).
84.
A.
Azens
,
L.
Kullman
, and
C. G.
Granqvist
,
Sol. Energy Mater. Sol. Cells
76
,
147
(
2003
).
85.
G. H.
Aydogdu
,
D.
Ruzmetov
, and
S.
Ramanathan
,
J. Appl. Phys.
108
,
113702
(
2010
).
86.
F.
Lin
,
D.
Nordlund
,
T.-C.
Weng
,
R. G.
Moore
,
D. T.
Gillaspie
,
A. C.
Dillon
,
R. M.
Richards
, and
C.
Engtrakul
,
ASC Appl. Mater. Interfaces
5
,
301
(
2013
).
87.
C. A.
Bishop
,
Vacuum Deposition onto Webs, Films and Foils
, 2nd ed. (
William Andrew
,
Waltham, MA
,
2011
).
88.
İ. Bayrak
Pehlivan
,
E. L.
Runnerstrom
,
S.-Y.
Li
,
G. A.
Niklasson
,
D. J.
Milliron
, and
C. G.
Granqvist
,
Appl. Phys. Lett.
100
,
241902
(
2012
).
89.
Y.
Zhang
,
S.-H.
Lee
,
A.
Mascarenhas
, and
S. K.
Deb
,
Appl. Phys. Lett.
93
,
203508
(
2008
).
90.
T.
Kamimori
,
J.
Nagai
, and
M.
Mizuhashi
,
Sol. Energy Mater.
16
,
27
(
1987
).
91.
J. Degerman
Engfeldt
,
P.
Georen
,
C.
Lagergren
, and
G.
Lindbergh
,
Appl. Opt.
50
,
5639
(
2011
).
92.
Y.
Liu
,
L.
Sun
,
G.
Sikha
,
J.
Isidorsson
,
S.
Lim
,
A.
Anders
,
B. L.
Kwak
, and
J. G.
Gordon
 II
,
Sol. Energy Mater. Sol. Cells
120
,
1
(
2014
).
93.
A.
Jonsson
,
A.
Roos
, and
E. K.
Jonson
,
Sol. Energy Mater. Sol. Cells
94
,
992
(
2010
).
94.
M. A.
Arvizu
,
C. A.
Triana
,
B. I.
Stefanov
,
C. G.
Granqvist
, and
G. A.
Niklasson
,
Sol. Energy Mater. Sol. Cells
125
,
184
(
2014
).
95.
D.
Gillaspie
,
A.
Norman
,
C. E.
Tracy
,
J. R.
Pitts
,
S.-H.
Lee
, and
A.
Dillon
,
J. Electrochem. Soc.
157
,
H328
(
2010
).
96.
S. V.
Green
,
C. G.
Granqvist
, and
G. A.
Niklasson
,
Sol. Energy Mater. Sol. Cells
126
,
248
(
2014
).
97.
F.
Lin
 et al.,
ACS Appl. Mater. Interfaces
5
,
3643
(
2013
).
98.
L. Y.
Cha
,
S. H.
Park
,
J. W.
Lim
,
S. J.
Yoo
, and
Y.-E.
Sung
,
Sol. Energy Mater. Sol. Cells
108
,
22
(
2013
).
99.
Membrane Structures
, edited by
K.-M.
Koch
(
Prestel
,
Munich, Germany
,
2004
).
100.
A.
LeCuyer
,
ETFE: Design and Technology
(
Birkhäuser
,
Basel, Switzerland
,
2008
).
You do not currently have access to this content.