O2 and N2O, popular oxygen precursors for oxide films growth, have been employed to grow Fe3O4 films on GaN templates via metal organic chemical vapor deposition (MOCVD). A (111)-oriented Fe3O4 film was preferably deposited when N2O was used as O precursor, while a Fe2O3 film was grown with O2 as O precursor. A high-temperature annealing has caused a phase transition from α-Fe2O3 to Fe3O4 for O2 case, but no obvious change occurred on the Fe3O4 film for N2O case. Thinner Fe3O4 layer was then grown on a GaN template with N2O as O precursor to form ferromagnetic material (FM)/nonmagnetic material (NM) heterostructure, which is critical for the realization of spin injection in GaN based wide band gap semiconductors. The Ga diffusion from the GaN template to the Fe3O4 layer has been controlled at a rather low level possibly due to the employed low-temperature growth, leading to a high-quality FM/NM heterostructure. An obvious enhancement on the Ga diffusion has been observed upon subsequent annealing for the thin Fe3O4 layer, which dispersed the FM/NM interface, improved the crystal quality, but weakened the magnetic properties. This study indicates that MOCVD is a suitable method to grow high-quality Fe3O4 films on GaN and should be a powerful tool for the realization of GaN based spin light-emitting diode.

1.
S. A.
Wolf
,
D. D.
Awschalom
,
R. A.
Buhrman
,
J. M.
Daughton
,
S.
von Molnar
,
M. L.
Roukes
,
A. Y.
Chtchelkanova
, and
D. M.
Treger
,
Science
294
,
1488
(
2001
).
2.
A. G.
Petukhov
,
J.
Niggemann
,
V. N.
Smelyanskiy
, and
V. V.
Osipov
.
J. Phys.: Condens. Matter
19
,
315205
(
2007
).
3.
G.
Schmidt
,
D.
Ferrand
,
L. W.
Molenkamp
,
A. T.
Filip
, and
B. J.
van Wees
,
Phys. Rev. B
62
,
R4790
(
2000
).
5.
A. T.
Hanbicki
 et al,
Appl. Phys. Lett.
82
,
4092
(
2003
).
6.
Z.
Zhang
and
S.
Satpathy
,
Phys. Rev. B
44
,
13319
(
1991
).
7.
Y. S.
Dedkov
,
U.
Rüdiger
, and
G.
Güntherodt
,
Phys. Rev. B
65
,
064417
(
2002
).
8.
M.
Fonin
,
Y. S.
Dedkov
,
R.
Pentcheva
,
U.
Rüdiger
, and
G.
Güntherodt
,
J. Phys.: Condens. Matter
19
,
315217
(
2007
);
[PubMed]
M.
Fonin
,
Y. S.
Dedkov
,
R.
Pentcheva
,
U.
Rüdiger
, and
G.
Güntherodt
,
J. Phys.: Condens. Matter
,
20
,
142201
(
2008
).
9.
M.
Fonin
,
R.
Pentcheva
,
Yu. S.
Dedkov
,
M.
Sperlich
,
D. V.
Vyalikh
,
M.
Scheffler
,
U.
Rüdiger
, and
G.
Güntherodt
,
Phys. Rev. B
72
,
104436
(
2005
).
10.
G. E.
Sterbinsky
,
J.
Cheng
,
P. T.
Chiu
,
B. W.
Wessels
, and
D. J.
Keavney
,
J. Vac. Sci. Technol., B
25
,
1389
(
2007
).
11.
D.
Gilks
,
L.
Lari
,
Z.
Cai
,
O.
Cespedes
,
A.
Gerber
,
S.
Thompson
,
K.
Ziemer
, and
V. K.
Lazarov
,
J. Appl. Phys.
113
,
17B107
(
2013
).
12.
S. B.
Ogale
,
K.
Ghosh
,
R. P.
Sharma
,
R. L.
Greene
,
R.
Ramesh
, and
T.
Venkatesan
,
Phys. Rev. B
57
,
7823
(
1998
).
13.
J. G.
Zheng
,
G. E.
Sterbinsky
,
J.
Cheng
, and
B. W.
Wessels
,
J. Vac. Sci. Technol., B
25
,
1520
(
2007
).
14.
Y. X.
Lu
,
J. S.
Claydon
,
Y. B.
Xu
,
S. M.
Thompson
,
K.
Wilson
, and
G. vander
Laan
,
Phys. Rev. B
70
,
233304
(
2004
).
15.
C.
Pflitsch
,
D.
Viefhaus
,
U.
Bergmann
,
V.
Kravets
,
H.
Nienhaus
, and
B.
Atakan
,
J. Electrochem. Soc.
153
,
C546
(
2006
).
16.
S.
Park
,
S.
Lim
, and
H.
Choi
,
Chem. Mater.
18
,
5150
(
2006
).
17.
P. K. J.
Wong
 et al,
Phys. Rev. B
81
,
035419
(
2010
).
18.
B.
Beschoten
 et al,
Phys. Rev. B
63
,
121202(R)
(
2001
).
19.
S.
Krishnamurthy
,
M.
van Schilfgaarde
, and
N.
Newman
,
Appl. Phys. Lett.
83
,
1761
(
2003
).
20.
P.
Suggisetti
,
D.
Banerjee
,
R.
Adari
,
N.
Pande
,
T.
Patil
,
S.
Ganguly
, and
D.
Saha
,
AIP Adv.
3
,
032143
(
2013
).
21.
S. Eon
Park
,
H.-J.
Lee
,
Y. C.
Cho
, and
S.-Y.
Jeong
,
Appl. Phys. Lett.
80
,
4187
(
2002
).
22.
T.
Sasaki
,
S.
Sonada
,
Y.
Yamamoto
,
K.
Suga
,
S.
Shimizu
,
K.
Kindo
, and
H.
Hori
,
J. Appl. Phys.
91
,
7911
(
2002
).
23.
D.
Banerjee
,
R.
Adari
,
S.
Sankaranarayan
,
A.
Kumar
,
S.
Ganguly
,
R. W.
Aldhaheri
,
M. A.
Hussain
,
A. S.
Balamesh
, and
D.
Saha
,
Appl. Phys. Lett.
103
,
242408
(
2013
).
24.
S.
Huang
,
S.
Gu
,
S.
Zhu
,
R.
Gu
,
K.
Tang
,
J.
Ye
,
R.
Zhang
,
Y.
Shi
, and
Y.
Zheng
,
J. Vac. Sci. Technol., B
31
,
051203
(
2013
).
25.
S.
Mathur
,
V.
Sivakov
,
H.
Shen
,
S.
Barth
,
C.
Cavelius
,
A.
Nilsson
, and
P.
Kuhn
, Thin Solid Films
502
,
88
(
2006
).
26.
O. N.
Shebanova
and
P.
Lazor
,
J. Raman Spectrosc.
34
,
845
(
2003
).
27.
S.-H.
Shim
and
T. S.
Duffy
,
Am. Mineral.
87
,
318
(
2001
), available at http://ammin.geoscienceworld.org/content/87/2-3/318.short.
28.
X.
Cao
,
Y.
Koltypin
,
R.
Prozorov
,
G.
Kataby
, and
A.
Gedanken
,
J. Mater. Res.
12
,
402
(
1997
).
29.
M. Ibrahim
Dar
and
S. A.
Shivashankar
,
RSC Adv.
4
,
4105
(
2014
).
30.
E.
Oha
,
B. W.
Leea
,
T. S.
Kima
,
J.-M.
Lee
,
S. J.
Oh
, and
J. D.
Song
,
Curr. Appl. Phys.
12
,
1244
(
2012
).
31.
R.
Master
,
R. J.
Choudhary
, and
D. M.
Phase
,
J. Appl. Phys.
108
,
103909
(
2010
).
32.
K. A.
Shaw
,
E.
Lochner
, and
D. M.
Lind
,
J. Appl. Phys.
87
,
1727
(
2000
).
33.
M.
Paul
 et al,
Appl. Phys. Lett.
98
,
012512
(
2011
).
34.
R.
Prakash
,
R. J.
Choudhary
,
L. S. Sharath
Chandra
,
N.
Lakshmi
, and
D. M.
Phase
,
J. Phys.: Condens. Matter
19
,
486212
(
2007
).
35.
S.
Gota
,
E.
Guiot
,
M.
Henriot
, and
M.
Gautier-Soyer
,
Phys. Rev. B
60
,
14387
(
1999
).
36.
S. D.
Wolter
,
B. P.
Luther
,
D. L.
Waltemyer
,
C.
Onneby
,
S. E.
Mohney
, and
R. J.
Molnar
,
Appl. Phys. Lett.
70
,
2156
(
1997
).
37.
D. Hyun
Kim
,
S. Ho
Yoo
,
T.-M.
Chung
,
K.-S.
An
,
H.-S.
Yoo
, and
Y.
Kim
,
Bull. Korean Chem. Soc.
23
,
225
(
2002
).
38.
T.
Fujii
,
F. M. F. de
Groot
,
G. A.
Sawatzky
,
F. C.
Voogt
,
T.
Hibma
, and
K.
Okada
,
Phys. Rev. B
59
,
3195
(
1999
).
39.
J.
Kohout
,
E.
Gamaliy
,
H.
Štěpánková
,
J.
Englich
,
V.
Procházka
,
V.
Chlan
, and
V. A. M.
Brabers
,
J. Magn. Magn. Mater.
290
,
1018
(
2005
).
40.
D.
Venkateshvaran
,
M.
Althammer
,
A.
Nielsen
,
S.
Geprägs
,
M. S. Ramachandra
Rao
,
S. T. B.
Goennenwein
,
M.
Opel
, and
R.
Gross
,
Phys. Rev B
79
,
134405
(
2009
).
41.
Y.
Yafet
and
C.
Kittel
,
Phys. Rev.
87
,
290
(
1952
).
You do not currently have access to this content.