The authors study the thermal oxidation of nickel thin films (50 nm) fabricated by conventional thermal evaporation, resulting from annealing in air at 300, 325, 350, 400, and 700 °C. The characterization is performed by x-ray diffraction, Raman spectroscopy, superconducting quantum interference device magnetometry, and scanning electron microscopy. These techniques show that the oxidation increases with annealing temperature. The formation of granular films of coexisting Ni and NiO is confirmed after annealing at 400 °C. The magnetic measurements indicate coexisting ferromagnetism and antiferromagnetism, corresponding to Ni and NiO contributions. The magnetic hysteresis loops reveal exchange bias in the samples annealed at 235, 350, and 400 °C due to the competition between the exchange interactions at the Ni/NiO interfaces.

1.
CRC Handbook of Chemistry and Physics
, 93rd ed., edited by
W. M.
Haynes
(
CRC, Taylor and Francis Group
,
FL,
2012
).
2.
J.
Tersoff
and
L. M.
Falicov
,
Phys. Rev. B
26
,
6186
(
1982
).
3.
K.
Fueki
and
J. B.
Wagner
,
J. Electrochem. Soc.
112
,
384
(
1965
).
4.
J. A.
Goebel
and
F. S.
Pettit
,
Metall. Trans.
1
,
1943
(
1970
).
6.
H.
Gleiter
,
Prog. Mater. Sci.
33
,
223
(
1989
).
7.
M. E.
McHenry
and
D. E.
Laughlin
,
Acta Mater.
48
,
223
(
2000
).
8.
9.
E.
Fujii
,
A.
Tomozawa
,
H.
Torii
, and
R.
Takayama
,
Jpn. J. Appl. Phys., Part 2
35
,
L328
(
1996
).
10.
D.
Adler
and
J.
Feinleib
,
Phys. Rev. B
2
,
3112
(
1970
).
11.
E.
Antoini
,
J. Mater. Sci.
27
,
3335
(
1992
).
12.
G. A.
Sawatzky
and
J. W.
Allen
,
Phys. Rev. Lett.
53
,
2339
(
1984
).
13.
A. B.
Kunz
,
J. Phys. C: Solid State Phys.
14
,
L445
(
1981
).
14.
H.
Sato
,
T.
Mimani
,
S.
Takata
, and
T.
Yamada
,
Thin Solid Films
236
,
27
(
1993
).
15.
J. B.
Wu
,
C.-W.
Nan
,
Y. H.
Lin
, and
Y.
Deng
,
Phys. Rev. Lett.
89
,
217601
(
2002
).
16.
M. J.
Carey
and
A. E.
Berkowitz
,
J. Appl. Phys.
73
,
6892
(
1993
).
17.
I.
Hotovy
,
J.
Huran
, and
P.
Siciliano
,
Sens. Actuators, B
78
,
126
(
2001
).
18.
I. M.
Chan
,
T. Y.
Hsu
, and
F. C.
Hong
,
Appl. Phys. Lett.
81
,
1899
(
2002
).
19.
W.
Shin
and
N.
Murayama
,
Mater. Lett.
45
,
302
(
2000
).
20.
S.
Yamada
,
T.
Yoshioka
,
M.
Miyasita
,
K.
Urabe
, and
M.
Kitao
,
J. Appl. Phys.
63
,
2116
(
1988
).
21.
M.
Kitao
,
K.
Izawa
,
K.
Urabe
,
T.
Komatsu
,
S.
Kuwano
, and
S.
Yamada
,
Jpn. J. Appl. Phys., Part 1
33
,
6656
(
1994
).
22.
J. F. K.
Cooper
, et al.,
J. Appl. Phys.
114
,
083906
(
2013
).
23.
J. S. E. M.
Svensson
and
C. G.
Granqvist
,
Appl. Phys. Lett.
49
,
1566
(
1986
).
24.
D. A.
Wruck
,
M. A.
Dixon
,
M.
Rubin
, and
S. N.
Bogy
,
J. Vac. Sci. Technol., A
9
,
2170
(
1991
).
25.
C. M.
Lampert
and
R.
Caron-Popowich
,
Proc. SPIE
1149
,
56
(
1989
).
26.
P.
Mohanty
,
C.
Rath
,
P.
Mallick
,
R.
Biswal
, and
N. C.
Mishra
,
Physica B
405
,
2711
(
2010
).
27.
S. I.
Cordoba-Torrsi
,
C.
Gabrielli
,
A. Hugot-Le
Goff
, and
R.
Torresi
,
J. Electrochem. Soc.
138
,
1548
(
1991
).
28.
E.
Fujii
,
A.
Tomozawa
,
S.
Fujii
,
H.
Torii
,
H.
Torii
,
M.
Hattori
, and
R.
Takayama
,
Jpn. J. Appl. Phys., Part 2
32
,
L1448
(
1993
).
29.
J.
van Lierop
,
L. H.
Lewis
,
K. E.
Williams
, and
R. J.
Gambino
,
J. Appl. Phys.
91
,
7233
(
2002
).
30.
L.
Wang
,
Z.
Zhang
, and
Y.
Cao
,
J. Ceram. Soc. Jpn.
101
,
227
(
1993
).
31.
L. de los Santos
Valladares
, et al.,
Thin Solid Films
520
,
6368
(
2012
).
32.
L. de los Santos
Valladares
, et al.,
Surf. Sci.
603
,
2978
(
2009
).
33.
L. de los Santos
Valladares
,
A. Bustamante
Domínguez
,
L. León
Félix
,
T.
Mitrelias
,
A.
Ionescu
,
J. Quispe
Marcatoma
, and
C. H. W.
Barnes
,
J. Mater. Sci. Eng.
4
,
1
(
2010
), available at http://www.davidpublishing.com/show.html?3279.
34.
B. D.
Cullity
,
Elements of X-ray Diffraction
(
Addison-Wesley Publishing Company, Inc.
,
1956
), pp.
96
102
.
35.
B. D.
Cullity
and
C. D.
Graham
,
Introduction to magnetic materials
, 2nd ed. (
John Wiley and Sons, Inc.
,
2009
), pp. 48–66 and
115
149
.
36.
M.
Malathi
, “
Compact model for a magnetic tunnel junction
,” Ph.D. thesis (
Faculty of Engineering and Technology, SRM University
,
India
,
2009
), pp.
40
43
.
37.
A.
Aharoni
,
J. Appl. Phys.
83
,
3432
(
1998
).
38.
A.
Aharoni
,
L.
Pust
, and
M.
Kief
,
J. Appl. Phys.
87
,
6564
(
2000
).
39.
Powder Diffraction Files PDF-2 of the International Centre for Diffraction Data® (ICDD®),
2001
.
40.
D.
Tao
and
F.
Wei
,
Mater. Lett.
58
,
3226
(
2004
).
41.
L.
Wu
,
Y.
Wu
,
H.
Wei
,
Y.
Shi
, and
C.
Hu
,
Mater. Lett.
58
,
2700
(
2004
).
42.
I.
Hotovy
,
J.
Huran
, and
L.
Spiess
,
J. Mater. Sci.
39
,
2609
(
2004
).
43.
T.
Okazawa
,
T.
Nishizawa
,
T.
Nishimura
, and
Y.
Kido
,
Phys. Rev. B
75
,
033413
(
2007
).
44.
P. A.
Temple
and
C. E.
Hathaway
,
Phys. Rev. B
7
,
3685
(
1973
).
45.
R. E.
Dietz
,
W. F.
Brinkman
,
A. E.
Meixner
, and
H. J.
Guggenheim
,
Phys. Rev. Lett.
27
,
814
(
1971
).
46.
R. E.
Dietz
,
G. I.
Parisot
, and
A. E.
Meixner
,
Phys. Rev. B
4
,
2302
(
1971
).
47.
M. G.
Cottam
and
D. J.
Lockwood
,
Light Scattering in Magnetic Solids
(
Wiley
,
New York
,
1986
).
48.
P. A.
Fleury
and
R.
Loudon
,
Phys. Rev.
166
,
514
(
1968
).
49.
N.
Mironova-Ulmane
,
A.
Kuzmin
,
I.
Steins
,
J.
Grabis
,
I.
Sildos
, and
M.
Pars
,
J. Phys.: Conf. Ser.
93
,
012039
(
2007
).
50.
W.
Duan
,
S. H.
Lu
,
Z. L.
Wu
, and
Y. S.
Wang
,
J. Phys. Chem. C
116
,
26043
(
2012
).
51.
M. R.
Pinnel
,
H. G.
Tompkis
, and
D. E.
Heath
,
J. Electrochem. Soc.
126
,
1274
(
1979
).
52.
S. Veena
Kumari
,
M.
Natarajan
,
V. K.
Vaidyan
, and
P.
Koshy
,
J. Mater. Sci. Lett.
11
,
761
(
1992
).
53.
N.
Cabrera
and
N. F.
Mot
,
Rep. Prog. Phys.
12
,
163
(
1949
).
54.
A.
Atkinson
and
R. I.
Taylor
,
J. Phys. Chem. Solids
47
,
315
(
1986
).
55.
X.
Wu
,
C.
Ossadnik
,
C.
Eggs
,
S.
Veprek
, and
F.
Phillipp
,
J. Vac. Sci. Technol., B
20
,
1368
(
2002
).
56.
S.
Andersson
and
L.
Dzhavadov
,
J. Phys.: Condens. Matter
4
,
6209
(
1992
).
57.
J.
Nogués
and
I. K.
Schuller
,
J. Magn. Magn. Mater.
192
,
203
(
1999
).
You do not currently have access to this content.