The authors investigate individual carbon nanocoil (CNC) growth by in-situ observations using optical microscopy. From the temperature dependence of growth rate, the activation energy for CNC growth was found to be 0.5 eV. A higher activation energy of 1.1 eV was required to form noncoiled fibers. Comparing these activation energies indicated that incorporating Sn within the Fe matrix lowered the activation energy for carbon diffusion, within or on catalyst particles. The authors also found that the smooth growth of some CNCs was inhibited by the collision of catalyst particles at the tips of the CNCs.

1.
W. R.
Davis
,
R. J.
Slawson
, and
G. R.
Rigby
,
Nature
171
,
756
(
1953
).
2.
S.
Amelinckx
,
X. B.
Zhang
,
D.
Bernaerts
,
X. F.
Zhang
,
V.
Ivanov
, and
J. B.
Nagy
,
Science
265
,
635
(
1994
).
3.
X. Q.
Chen
,
S. L.
Zhang
,
D. A.
Dikin
,
W. Q.
Ding
,
R. S.
Ruoff
,
L. J.
Pan
, and
Y.
Nakayama
,
Nano Lett.
3
,
1299
(
2003
).
4.
T.
Hayashida
,
L.
Pan
, and
Y.
Nakayama
,
Physica B
323
,
352
(
2002
).
5.
L. J.
Pan
,
T.
Hayashida
,
M.
Zhang
, and
Y.
Nakayama
,
Jpn. J. Appl. Phys.
40
,
L235
(
2001
).
6.
J.
Jiao
,
E.
Einarsson
,
D. W.
Tuggle
,
L.
Love
,
J.
Prado
, and
G. M.
Coia
,
J. Mater. Res.
18
,
2580
(
2003
).
7.
L.
Pan
,
O.
Konishi
,
H.
Tanaka
,
O.
Suekane
,
T.
Nosaka
, and
Y.
Nakayama
,
Jpn. J. Appl. Phys.
44
,
1652
(
2005
).
8.
R.
Kanada
,
L.
Pan
,
S.
Akita
,
N.
Okazaki
,
K.
Hirahara
, and
Y.
Nakayama
,
Jpn. J. Appl. Phys.
47
,
1949
(
2008
).
9.
S.
Motojima
,
X.
Chen
,
S.
Yang
, and
M.
Hasegawa
,
Diam. Relat. Mater.
13
,
1989
(
2004
).
10.
S.
Motojima
,
Y.
Noda
,
S.
Hoshiya
, and
Y.
Hishikawa
,
J. Appl. Phys.
94
,
2325
(
2003
).
11.
M.
Zhang
,
Y.
Nakayama
, and
L. J.
Pan
,
Jpn. J. Appl. Phys.
39
,
L1242
(
2000
).
12.
L. J.
Pan
,
M.
Zhang
, and
Y.
Nakayama
,
J. Appl. Phys.
91
,
10058
(
2002
).
13.
G. C.
Xu
,
B. B.
Chen
,
H.
Shiki
,
T.
Katsumata
,
H.
Takikawa
,
T.
Sakakibara
,
S.
Itoh
, and
T.
Ina
,
Jpn. J. Appl. Phys.
44
,
1569
(
2005
).
14.
N.
Okazaki
,
S.
Hosokawa
,
T.
Goto
, and
Y.
Nakayama
,
J. Phys. Chem. B
109
,
17366
(
2005
).
15.
H.
Takikawa
,
M.
Yatsuki
,
R.
Miyano
,
M.
Nagayama
,
T.
Sakakibara
,
S.
Itoh
, and
Y.
Ando
,
Jpn. J. Appl. Phys.
39
,
5177
(
2000
).
16.
C.
Kuzuya
,
W.
In-Hwang
,
S.
Hirako
,
Y.
Hishikawa
, and
S.
Motojima
,
Chem. Vapor Depos.
8
,
57
(
2002
).
17.
L. J.
Pan
,
T.
Hayashida
,
A.
Harada
, and
Y.
Nakayama
,
Physica B
323
,
350
(
2002
).
18.
D. B.
Geohegan
,
A. A.
Puretzky
,
I. N.
Ivanov
,
S.
Jesse
,
G.
Eres
, and
J. Y.
Howe
,
Appl. Phys. Lett.
83
,
1851
(
2003
).
19.
A. A.
Puretzky
,
G.
Eres
,
C. M.
Rouleau
,
I. N.
Ivanov
, and
D. B.
Geohegan
,
Nanotechnology
19
,
055605
(
2008
).
20.
A. A.
Puretzky
,
D. B.
Geohegan
,
S.
Jesse
,
I. N.
Ivanov
, and
G.
Eres
,
Appl. Phys. A
81
,
223
(
2005
).
21.
H.
Yoshida
,
S.
Takeda
,
T.
Uchiyama
,
H.
Kohno
, and
Y.
Homma
,
Nano Lett.
8
,
2082
(
2008
).
22.
S.
Helveg
,
C.
Lopez-Cartes
,
J.
Sehested
,
P. L.
Hansen
,
B. S.
Clausen
,
J. R.
Rostrup-Nielsen
,
F.
Abild-Pedersen
, and
J. K.
Norskov
,
Nature
427
,
426
(
2004
).
23.
S.
Hofmann
 et al,
Nano Lett.
7
,
602
(
2007
).
24.
M.
Lin
,
J. P.
Ying Tan
,
C.
Boothroyd
,
K. P.
Loh
,
E. S.
Tok
, and
Y.-L.
Foo
,
Nano Lett.
6
,
449
(
2006
).
25.
K.
Hirahara
and
Y.
Nakayama
,
Carbon
56
,
264
(
2013
).
26.
K.
Nishimura
,
L.
Pan
, and
Y.
Nakayama
,
Jpn. J. Appl. Phys.
43
,
5665
(
2004
).
27.
S.
Hokushin
,
L.
Pan
, and
Y.
Nakayama
,
Jpn. J. Appl. Phys.
46
,
5383
(
2007
).
28.
H. O.
Pierson
,
Handbook of Carbon, Graphite, Diamond, and Fullerenes
(
Noyes Publications
,
Park Ridge
,
1993
).
29.
Y. T.
Lee
,
J.
Park
,
Y. S.
Choi
,
H.
Ryu
, and
H. J.
Lee
,
J. Phys. Chem. B
106
,
7614
(
2002
).
30.
R. T. K.
Baker
,
Carbon
27
,
315
(
1989
).
You do not currently have access to this content.