Electroless plating is a deposition technique in which metal ions are reduced as atoms on specific patterned sites of a silicon surface to form metal nanoparticles (NPs) aggregates with the desired characteristics. Those NPs, in turn, can be used as constituents of surface enhanced Raman spectroscopy substrates, which are devices where the electromagnetic field and effects thereof are giantly amplified. Here, the electroless formation of nanostructures was studied as a function of the geometry of the substrate. High resolution, electron beam lithography techniques were used to obtain nonperiodic arrays of circular patterns, in which the spacing of patterns was varied over a significant range. In depositing silver atoms in those circuits, the authors found that the characteristics of the aggregates vary with the pattern distance. When the patterns are in close proximity, the interference of different groups of adjacent aggregates cannot be disregarded and the overall growth is reduced. Differently from this, when the patterns are sufficiently distant, the formation of metal clusters of NPs is independent on the spacing of the patterns. For the particular subset of parameters used here, this critical correlation distance is about three times the pattern diameter. These findings were explained within the framework of a diffusion limited aggregation model, which is a simulation method that can decipher the formation of nanoaggregates at an atomic level. In the discussion, the authors showed how this concept can be used to fabricate ordered arrays of silver nanospheres, where the size of those spheres may be regulated on varying the pattern distance, for applications in biosensing and single molecule detection.

1.
T.
Theis
 et al.,
Nat. Nanotechnol.
1
,
8
(
2006
).
2.
G.
Whitesides
,
Nat. Biotechnol.
21
,
1161
(
2003
).
3.
M.
Ferrari
,
Nat. Rev. Cancer
5
,
161
(
2005
).
4.
G.
Das
,
F.
Mecarini
,
F.
Gentile
,
P.
Candeloro
,
C.
Liberale
,
F.
De Angelis
,
H.
Kumar
,
G.
Cuda
, and
E.
Di Fabrizio
,
Biosens. Bioelectron.
24
,
1693
(
2009
).
5.
K.
Kneipp
,
Phys. Today
60
(
6
),
40
(
2007
).
6.
F.
Garcia-Vidal
and
J.
Pendry
,
Phys. Rev. Lett.
77
,
1163
(
1996
).
7.
C. L.
Phillips
,
J. A.
Anderson
,
G.
Huber
, and
S. C.
Glotzer
,
Phys. Rev. Lett.
108
,
198304
(
2012
).
8.
P. F.
Damasceno
,
M.
Engel
, and
S. C.
Glotzer
,
Science
337
,
453
(
2012
).
10.
Y.
Xia
,
T. D.
Nguyen
,
M.
Yang
,
B.
Lee
,
A.
Santos
,
P.
Podsiadlo
,
Z.
Tang
,
S. C.
Glotzer
, and
N. A.
Kotov
,
Nat. Nanotechnol.
6
,
580
(
2011
).
11.
M. L.
Coluccio
 et al.,
Microelectron. Eng.
86
,
1085
(
2009
).
12.
T.
Qiu
and
P.
Chu
,
Mater. Sci. Eng. R
61
,
59
(
2008
).
13.
A. R.
Tao
,
S.
Habas
, and
P.
Yang
,
Small
4
,
310
(
2008
).
14.
F.
Gentile
 et al.,
Microelectron. Eng.
98
,
359
(
2012
).
15.
T.
Qiu
,
X.
Wu
,
Y.
Mei
,
P.
Chu
, and
G.
ùSiu
,
Appl. Phys. A
81
,
669
(
2005
).
16.
T.
Witten
and
L.
Sander
,
Phys. Rev. Lett.
47
,
1400
(
1981
).
17.
R.
Dawkins
and
D.
ben-Avraham
,
Comput. Sci. Eng.
3
,
72
(
2001
).
18.
H.
Wu
,
M.
Lattuada
,
P.
Sandkuhler
,
J.
Sefcik
, and
M.
Morbidelli
,
Langmuir
19
,
10710
(
2003
).
19.
F.
Persson
,
P.
Utko
,
W.
Reisner
,
N.
Larsen
, and
A.
Kristensen
,
Nano Lett.
9
,
1382
(
2009
).
20.
Z.
Zhang
and
M.
Lagally
,
Science
276
,
377
(
1997
).
21.
A. R.
Howells
,
L.
Hung
,
G. S.
Chottiner
, and
D. A.
Scherson
,
Solid State Ionics
150
,
53
(
2002
).
22.
T.
Qiu
,
X.
Wu
,
G.
Siu
, and
P. K.
Chu
,
Appl. Phys. Lett.
87
,
223115
(
2005
).
23.
A.
Kuhn
and
F.
Argoul
,
J. Electroanal. Chem.
397
,
93
(
1995
).
24.
Z.
Liu
,
H.
Lee
,
Y.
Xiong
,
C.
Sun
, and
X.
Zhang
,
Science
315
,
1686
(
2007
).
25.
M.
Saltzmann
,
Drug Delivery
(
Oxford Univ. Press
,
Oxford, UK
,
2001
).
26.
P.
Decuzzi
,
F.
Gentile
,
A.
Granaldi
,
A.
Curcio
,
F.
Causa
,
C.
Indolfi
,
P.
Netti
, and
M.
Ferrari
,
Int. J. Nanomed.
2
,
689
(
2007
), available at http://www.dovepress.com/articles.php?article_id=712.
27.
F.
Gentile
,
L.
Tirinato
,
E.
Battista
,
F.
Causa
,
C.
Liberale
,
E.
Di Fabrizio
, and
P.
Decuzzi
,
Biomaterials
31
,
7205
(
2010
).
28.
29.
Z.
Racz
and
T.
Vicsek
,
Phys. Rev. Lett.
51
,
2382
(
1983
).
30.
F.
Gentile
 et al.,
Microelectron. Eng.
88
,
2537
(
2011
).
31.
F.
Gentile
 et al.,
Microelectron. Eng.
111
,
272
(
2013
).
32.
A.
Carpentieri
and
N.
Pugno
,
Nat. Mater.
4
,
421
(
2005
).
33.
Y.
Astier
,
L.
Data
,
R. P.
Carney
,
F.
Stellacci
,
F.
Gentile
, and
E.
Di Fabrizio
,
Small
7
,
455
(
2011
).
35.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
,
J. Phys. Chem. B
107
,
668
(
2003
).
36.
K.
Lee
,
P.
Nallathamby
,
L.
Browning
,
C.
Osgood
, and
X. -H. N.
Xu
,
ACS Nano
1
,
133
(
2007
).
37.
R.
Bhattacharya
and
P.
Mukherjee
,
Adv. Drug Deliv. Rev.
60
,
1289
(
2008
).
38.
A.
Ravindrana
,
A.
Singha
,
A. M.
Raichurb
,
N.
Chandrasekarana
, and
A.
Mukherjeea
,
Colloid Surf. B
76
,
32
(
2010
).
40.
E.
Roduner
,
Chem. Soc. Rev.
35
,
583
(
2006
).
41.
S.
Cuenot
,
C.
Frétigny
,
S.
Demoustier-Champagne
, and
B.
Nysten
,
Phys. Rev. B
69
,
165410
(
2004
).
42.
F.
De Angelis
 et al.,
Nat. Photon.
5
,
682
(
2011
).
43.
F.
Gentile
 et al.,
ACS Appl. Mater. Interfaces
4
,
3213
(
2012
).
44.
H.
Natter
and
R.
Hempelmann
,
Electrochim. Acta
49
,
51
(
2003
).
45.
C. R. K.
Rao
and
D. C.
Trivedi
,
Coordin. Chem. Rev.
249
,
613
(
2005
).
46.
M.
Schlesinger
and
M.
Paunovic
,
Modern Electroplating
(
Wiley
,
New York
,
2000)
.
47.
W.
Babiaczyk
,
S.
Bonella
,
G.
Ciccotti
,
M.
Coluccio
,
F.
Gentile
, and
E.
Di Fabrizio
,
Nanoscale
4
,
2362
(
2012
).
48.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
(
CRC
,
Boulder, CO
,
1998)
.
49.
A. A.
Stekolnikov
,
J.
Furthmuller
, and
F.
Bechstedt
,
Phys. Rev. B
65
,
115318
(
2002
).
You do not currently have access to this content.