Alloying bismuth with InAs provides a ternary material system near the 6.1 Å lattice constant, which covers the technologically important mid- and long-wavelength infrared region. One challenge for this material system is that it is not straightforward to incorporate bismuth into the bulk InAs lattice, since bismuth has a tendency to surface-segregate and form droplets during growth. In this work, the conditions for InAsBi growth using molecular beam epitaxy are explored. A growth window is identified (temperatures ⪞ 270 °C, V/III flux ratios 0.98 ⪝ As/In ⪝ 1.02, and Bi/In ≅ 0.065) for droplet-free, high-quality crystalline material, where InAsBi layers with compositions of up to 5.8% bismuth (nearly lattice-matched to GaSb) are attained. The structural quality of InAsBi bulk and quantum well samples is evaluated using x-ray diffraction and transmission electron microscopy. The optical quality is assessed using photoluminescence, which is observed from quantum well structures up to room temperature and from thick, low Bi-content bulk layers at low temperatures. Bismuth is also used as a surfactant during the growth of InAs/InAsSb superlattices at 430 °C where it is observed that a small bismuth flux changes the surface reconstruction of InAs from (2×1) to (1×3), reduces the sticking coefficient of antimony, results in a slight increase in photoluminescence intensity, does not significantly incorporate, and does not alter the surface morphology.

1.
A.
Janotti
,
Su-Huai
Wei
, and
S. B.
Zhang
,
Phys. Rev. B
65
,
115203
(
2002
).
2.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
3.
N. A.
Riordan
 et al,
J. Mater. Sci.: Mater. Electron.
23
,
1799
(
2012
).
4.
S.
Francoeur
,
M.-J.
Seong
,
A.
Mascarenhas
,
S.
Tixier
,
M.
Adamcyk
, and
T.
Tiedje
,
Appl. Phys. Lett.
82
,
3874
(
2003
).
5.
V.
Pačebutas
,
K.
Bertulis
,
L.
Dapkus
,
G.
Aleksejenko
,
A.
Krotkus
,
K. M.
Yu
, and
W.
Walukiewicz
,
Semicond. Sci. Technol.
22
,
819
(
2007
).
6.
C.
Gogineni
,
N. A.
Riordan
,
S. R.
Johnson
,
X.
Lu
, and
T.
Tiedje
,
Appl. Phys. Lett.
103
,
041110
(
2013
).
7.
S.
Imhof
 et al,
Appl. Phys. Lett.
96
,
131115
(
2010
).
8.
G. B.
Stringfellow
and
P. E.
Greene
,
J. Electrochem. Soc.
118
,
805
(
1971
).
9.
K.
Alberi
 et al,
Phys. Rev. B
75
,
045203
(
2007
).
10.
Z. M.
Fang
,
K. Y.
Ma
,
R. M.
Cohen
, and
G. B.
Stringfellow
,
J. Appl. Phys.
68
,
1187
(
1990
).
11.
J.
Massies
and
N.
Grandjean
,
Phys. Rev. B
48
,
8502
(
1993
).
12.
N.
Grandjean
,
J.
Massies
, and
V. H.
Etgens
,
Phys. Rev. Lett.
69
,
796
(
1992
).
13.
J.
Massies
,
N.
Grandjean
, and
V. H.
Etgens
,
Appl. Phys. Lett.
61
,
99
(
1992
).
14.
Yu. G.
Sadofyev
,
S. R.
Johnson
,
S. A.
Chaparro
,
Y.
Cao
,
D.
Ding
,
J.-B.
Wang
,
K.
Franzreb
, and
Y.-H.
Zhang
,
Appl. Phys. Lett.
84
,
3546
(
2004
).
15.
S. R.
Johnson
,
Yu. G.
Sadofyev
,
D.
Ding
,
Y.
Cao
,
S. A.
Chaparro
,
K.
Franzreb
, and
Y.-H.
Zhang
,
J. Vac. Sci. Technol. B
22
,
1436
(
2004
).
16.
S.
Tixier
,
M.
Adamcyk
,
E. C.
Young
,
J. H.
Schmid
, and
T.
Tiedje
,
J. Cryst. Growth
251
,
449
(
2003
).
17.
E. C.
Young
,
S.
Tixier
, and
T.
Tiedje
,
J. Cryst. Growth
279
,
316
(
2005
).
18.
C. D.
Consorte
,
C. Y.
Fong
,
M. D.
Watson
,
L. H.
Yang
, and
S.
Ciraci
,
Mater. Sci. Eng. B
96
,
141
(
2002
).
You do not currently have access to this content.