The authors have studied the epitaxial growth and structural characterization of coalesced GaN nanowire arrays formed directly on Si and SiOx substrates. It was observed that the coalescence can be induced by the tilting or the enhanced lateral growth of the nanowires. Dislocations at the coalescence interface are largely localized, leading to the formation of nearly defect-free GaN microcrystals. In addition, high quality GaN epilayers can be grown directly on SiOx with buffer layer less than 1 μm by optimizing the growth parameters in nanowire nucleation and coalescence stages.

1.
D.
Cherns
,
L.
Meshi
,
I.
Griffiths
,
S.
Khongphetsak
,
S. V.
Novikov
,
N.
Farley
,
R. P.
Campion
, and
C. T.
Foxon
,
Appl. Phys. Lett.
92
,
121902
(
2008
).
2.
D.
Cherns
 et al,
J. Phys.: Conf. Ser.
209
,
012001
(
2010
).
3.
Q.
Li
,
Y.
Lin
,
J. R.
Creighton
,
J. J.
Figiel
, and
G. T.
Wang
,
Adv. Mater.
21
,
2416
(
2009
).
4.
P.
Shields
 et al,
Phys. Status Solidi C
8
,
2334
(
2011
).
5.
C. L.
Chao
,
C. H.
Chiu
,
Y. J.
Lee
,
H. C.
Kuo
,
Po -Chun
Liu
,
Jeng
Dar Tsay
, and
S. J.
Cheng
,
Appl. Phys. Lett.
95
,
051905
(
2009
).
6.
T.
Tang
 et al,
J. Appl. Phys.
105
,
023501
(
2009
).
7.
C.
Shen
,
C. C.
Yang
,
M.
Hsu
,
J.
Yeh
, and
T.
Hsu
,
J. Appl. Phys.
106
,
023521
(
2009
).
8.
T. S.
Zheleva
,
S. A.
Smith
,
D. B.
Thomson
,
K. J.
Linthicum
,
P.
Rajagopal
, and
R. F.
Davis
,
J. Electron. Mater
.
28
,
L5
(
1999
).
9.
R. K.
Debnath
,
R.
Meijers
,
T.
Richter
,
T.
Stoica
,
R.
Calarco
, and
H.
Lüth
,
Appl. Phys. Lett.
90
,
123117
(
2007
).
10.
K. A.
Grossklaus
,
A.
Banerjee
,
S.
Jahangir
,
P.
Bhattacharya
, and
J. M.
Millunchick
,
J. Cryst. Growth
371
,
142
(
2013
).
11.
V.
Consonni
,
M.
Knelangen
,
A.
Trampert
,
L.
Geelhaar
, and
H.
Riechert
,
Appl. Phys. Lett.
98
,
071913
(
2011
).
12.
P.
Dogan
,
O.
Brandt
,
C.
Pfuller
,
A.
Bluhm
,
L.
Geelhaar
, and
H.
Riechert
,
J. Cryst. Growth
323
,
418
(
2011
).
13.
K.
Kato
,
K.
Kishino
,
H.
Sekiguchi
, and
A.
Kikuchi
,
J. Cryst. Growth
311
,
2956
(
2009
).
14.
J.
Ristic
,
E.
Calleja
,
S.
Fernandez-Garrido
,
L.
Cerutti
,
A.
Trampert
,
U.
Jahn
, and
K. H.
Ploog
,
J. Cryst. Growth
310
,
4035
(
2008
).
15.
Z.
Bougriouaa
,
P.
Gibarta
,
E.
Callejab
,
U.
Jahnc
,
A.
Trampertc
,
J.
Risticb
,
M.
Utrerab
, and
G.
Nataf
,
J. Cryst. Growth
309
,
113
(
2007
).
16.
P.
Dogan
,
O.
Brandt
,
C.
Pfuller
,
J.
Lahnemann
,
U.
Jahn
,
C.
Roder
,
A.
Trampert
,
L.
Geelhaar
, and
H.
Riechert
,
J. Cryst. Growth
11
,
4257
(
2011
).
17.
R.
Lieten
and
S.
Degroote
, U.S. patent 7,964,482 B2 (21 June
2011
).
18.
I.
Akasaki
and
H.
Amano
,
Jpan. J. Appl. Phys.
36
,
5393
(
1997
).
19.
J.
Johnson
,
H.
Choi
,
K.
Knutsen
,
R.
Schaller
,
P.
Yang
, and
R.
Saykally
,
Nat. Mater
.
1
,
106
(
2002
).
20.
J. J.
Wierer
, Jr.
,
Q.
Li
,
D. D.
Koleske
,
S. R.
Lee
, and
G. T.
Wang
,
Nanotechnology
23
,
194007
(
2012
).
21.
D.
Wang
 et al,
Nano Lett.
11
,
2353
(
2011
).
22.
B.
Alotaibi
,
M.
Harati
,
S.
Fan
,
S.
Zhao
,
H. P. T.
Nguyen
,
M. G.
Kibria
, and
Z.
Mi
,
Nanotechnology
24
,
175401
(
2013
).
23.
H. P. T.
Nguyen
,
K.
Cui
,
S.
Zhang
,
S.
Fathololoumi
, and
Z.
Mi
,
Nanotechnology
22
,
445202
(
2011
).
24.
S.
Ling
 et al,
J. Cryst. Growth
312
,
1316
(
2010
).
25.
K.
Kusakabe
,
A.
Kikuchi
, and
K.
Kishino
,
Jpn. J. Appl. Phys.
40
,
192
(
2001
).
26.
S. D.
Hersee
,
A. K.
Rishinaramangalam
, and
M. N.
Fairchild
,
J. Mater. Res.
26
,
2293
(
2011
).
27.
S.
Zhao
,
M. G.
Kibria
,
Q.
Wang
,
H. P. T.
Nguyen
, and
Z.
Mi
,
Nanoscale
5
,
5283
(
2013
).
You do not currently have access to this content.