The authors report on the study of homogeneity in structural and optical properties of AlxGa1−xN/GaN high electron mobility transistor (HEMT) structures grown on 200 mm diameter Si(111) substrates. The consequence of a variation of buffer layer thicknesses as well as the interface quality has been studied by in-situ growth monitoring. A reasonably good uniformity of crystalline quality in the heterostructures grown with a lower wafer bowing has been observed from the full width at half maxima of symmetric as well as asymmetric high resolution x-ray diffraction scans across the wafer. Furthermore, the thickness and Al content of the AlxGa1−xN barrier layer across the wafer is found to be uniform when the wafer bowing is lower. Optical and electrical measurements across the epiwafer address the strain homogeneity, luminescence, and two-dimensional electron gas properties. Based on these studies of growth optimization, HEMT epiwafers with a total nitride stack thickness of 4.4 μm with a wafer bowing <50 μm on 1.0 mm thick Si substrates are demonstrated.

1.
T. K.
Li
,
M.
Mastro
, and
A.
Dadgar
,
III–V Compound Semiconductors: Integration with Silicon-Based Microelectronics
(
CRC
,
Parkway, NW
,
2010
).
2.
S.
Arulkumaran
,
G. I.
Ng
,
S.
Vicknesh
,
H.
Wang
,
K. S.
Ang
,
C. M.
Kumar
,
K. L.
Teo
, and
K.
Ranjan
,
Appl. Phys. Express
6
,
016501
(
2013
).
3.
H. F.
Liu
,
S. B.
Dolmanan
,
L.
Zhang
,
S. J.
Chua
,
D. Z.
Chi
,
M.
Heuken
, and
S.
Tripathy
,
J. Appl. Phys.
113
,
023510
(
2013
).
4.
Kung-Liang
Lin
,
Edward-Yi
Chang
,
Yu-Lin
Hsiao
,
Wei-Ching
Huang
,
Tingkai
Li
,
Doug
Tweet
,
Jer-Shen
Maa
,
Sheng-Teng
Hsu
, and
Ching-Ting
Lee
,
Appl. Phys. Lett.
91
,
222111
(
2007
).
5.
S.
Tripathy
 et al,
Appl. Phys. Lett.
101
,
082110
(
2012
).
6.
S.
Lenci
,
B.
De Jaeger
,
L.
Carbonell
,
J.
Hu
,
G.
Mannaert
,
D.
Wellekens
,
S.
You
,
B.
Bakeroot
, and
S.
Decoutere
,
IEEE Electron Device Lett.
34
,
1035
(
2013
).
7.
D.
Chisty
,
T.
Egawa
,
Y.
Yano
,
H.
tokunaga
,
H.
Shimamura
,
Y.
Yamaoka
,
A.
Ubukata
,
T.
Tabucji
, and
K.
Matsumoto
,
Appl. Phys. Express
6
,
026501
(
2013
).
8.
E.
Feltin
,
B.
Beaumont
,
M.
Laugt
,
P.
de Mierry
,
P.
Vennegues
,
H.
Lahreche
,
M.
Leroux
, and
P.
Gibart
,
Appl. Phys. Lett.
79
,
3230
(
2001
).
9.
A.
Dadgar
,
J.
Bläsing
,
A.
Diez
,
A.
Alam
,
M.
Heuken
, and
A.
Krost
,
Jpn. J. Appl. Phys. Part 2 Lett.
39
,
L1183
(
2000
);
A.
Dadgar
,
C.
Hums
,
A.
Diez
,
J.
Blasing
, and
A.
Krost
,
J. Cryst. Growth
297
,
279
(
2006
).
10.
S.
Arulkumaran
 et al,
Jpn. J. Appl. Phys.
51
,
111001
(
2012
).
11.
K.
Cheng
 et al,
Appl. Phys. Express
5
,
011002
(
2012
).
12.
P.
Mukhopadhyay
,
S.
Chowdhury
,
A.
Wowchak
,
A.
Dabiran
,
P.
Chow
, and
D.
Biswas
,
J. Vac. Sci. Technol. B
31
,
03C132
(
2013
).
13.
E.
Frayssinet
,
Y.
Cordier
,
H. P. D.
Schenk
, and
A.
Bavard
,
Phys. Status Solidi C
8
,
1479
(
2011
).
14.
H. P. D.
Schenk
,
E.
Frayssinet
,
A.
Bavard
,
D.
Rondi
,
Y.
Cordier
, and
M.
Kennard
,
J. Cryst. Growth
314
,
85
(
2011
).
15.
N.
Baron
,
Y.
Cordier
,
S.
Chenot
,
P.
Vennéguès
,
O.
Tottereau
,
M.
Leroux
,
F.
Semond
, and
J.
Massies
,
J. Appl. Phys.
105
,
033701
(
2009
).
16.
J.
Su
,
H.
Li
,
S.
Lee
,
B.
Krishnan
,
D.
Lee
,
G.
Papasouliotis
, and
A.
Paranjpe
,
CS MANTECH Conference
(
2013
), p.
285
.
17.
L. S.
Wang
,
K. Y.
Zang
,
S.
Tripathy
, and
S. J.
Chua
,
Appl. Phys. Lett.
85
,
5881
(
2004
).
You do not currently have access to this content.