Top-gated epitaxial-graphene nanoribbon (GNR) field-effect transistors on SiC wafers were fabricated and characterized at room temperature. The devices exhibited extremely high current densities (∼10 000 mA/mm) due to the combined advantages of the one-dimensionality of GNRs and the SiC substrate. These advantages included good heat dissipation as well as the high optical phonon energy of the GNRs and SiC substrate. An analytical model explains the measured family of ID–VDS curves with a pronounced ‘kink’ at a high electric field. The effective carrier mobility as a function of the channel length was extracted from both the ID–VDS modeling and the maximum transconductance from the ID–VGS curve. The effective mobility decreased for small channel lengths (<1 μm), exhibiting ballistic or quasiballistic transport properties.

1.
R.
Murali
,
Y.
Yang
,
K.
Brenner
,
T.
Beck
, and
J. D.
Meindl
,
Appl. Phys. Lett.
94
,
243114
(
2009
).
2.
Q.
Zhang
,
T.
Fang
,
A.
Seabaugh
,
H.
Xing
, and
D.
Jena
,
IEEE Electron Device Lett.
29
,
1344
(
2008
).
3.
R.
Murali
,
K.
Brenner
,
Y.
Yang
,
T.
Beck
, and
J. D.
Meindle
,
IEEE Electron Device Lett.
30
,
611
(
2009
).
4.
M. V.
Fischetti
,
D. A.
Neumayer
, and
E. A.
Cartier
,
J. Appl. Phys.
90
,
4587
(
2001
).
5.
S.
Ghosh
,
W.
Bao
,
D. L.
Nika
,
S.
Subrina
,
E. P.
Pokatilov
,
C. N.
Lau
, and
A. A.
Balandin
,
Nat. Mater.
9
,
555
(
2010
).
6.
J.-H.
Chen
,
C.
Jang
,
S.
Xiao
,
M.
Ishigami
, and
M. S.
Fuhrer
,
Nat. Nanotechnol.
3
,
206
(
2008
).
7.
Y.
Goldberg
,
M. E.
Levinshtein
, and
S. L.
Rumyantsev
, “
Silicon carbide (SiC)
,” in
Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiC, SiGe
, edited by
M. E.
Levinshtein
,
S. L.
Rumyantse
, and
M. S.
Shur
(
Wiley
,
New York
,
2001
), pp.
93
148
.
8.
A. D.
Liao
,
J. Z.
Wu
,
X.
Wang
,
K.
Tahy
,
D.
Jena
,
H.
Dai
, and
E.
Pop
,
Phys. Rev. Lett.
106
,
256801
(
2011
).
9.
J. S.
Moon
 et al.,
IEEE Electron Device Lett.
31
,
260
(
2010
).
10.
L. O.
Nyakiti
,
V. D.
Wheeler
,
N. Y.
Garces
,
R. L.
Myers-Ward
,
C. R.
Eddy
, Jr.
, and
D. K.
Gaskill
,
MRS Bull.
37
,
1149
(
2012
).
11.
W. S.
Hwang
 et al.,
J. Vac. Sci. Technol. B
30
,
03D104
1
(
2012
).
12.
T.
Fang
,
A.
Konar
,
H.
Xing
, and
D.
Jena
,
Phys. Rev. B
84
,
125450
(
2011
).
13.
X.
Luo
,
Y.
Lee
,
A.
Konar
,
T.
Fang
,
H.
Xing
,
G.
Sinder
, and
D.
Jena
,
Dev. Res. Conf.
2008
,
29
.
14.
H.
Wang
,
J. W.
Chung
,
X.
Gao
,
S.
Guo
, and
T.
Palacios
,
Phys. Status Solidi C
7
,
2440
(
2010
).
15.
R.
Wei
,
S.
Song
,
K.
Yang
,
Y.
Cui
,
Y.
Peng
,
X.
Chen
,
Xiaobo
Hu
, and
X.
Xu
,
J. Appl. Phys.
113
,
053503
(
2013
).
16.
M. G.
Burzo
,
P. L.
Komarov
, and
P. E.
Raad
,
IEEE Trans. Compon. Packag. Technol.
26
,
80
(
2003
).
17.
S.
Chen
,
Q.
Wu
,
C.
Mishra
,
J.
Kang
,
H.
Zhang
,
K.
Cho
,
W.
Cai
,
A. A.
Balandin
, and
R. S.
Ruoff
,
Nat. Mater.
11
,
203
(
2012
).
18.
D. A.
Neamen
,
Semiconductor Physics and Devices Basic Principles
, 3rd ed. (
McGraw-Hill
,
New York
,
2003
),
486
498
.
19.
I.
Meric
,
M. Y.
Han
,
A. F.
Young
,
B.
Ozyilmaz
,
P.
Kim
, and
K.
Shepard
,
Nature Nanotechnol.
3
,
654
(
2008
).
20.
Z.
Chen
and
J.
Appenzeller
,
IEEE Int. Electron Dev. Meet.
2008
,
1
.
You do not currently have access to this content.