Microwave irradiation of the C-rich (0001¯) surface of 6H-SiC is seen to rapidly induce the nucleation of conductive nanoscopic graphitic grains. Discrete graphitic islands are observed and Raman spectroscopy suggests turbostratic stacking with minimal electronic coupling between adjacent graphene layers. Ensemble Raman and near-edge x-ray absorption fine structure (NEXAFS) spectroscopies are used in conjunction with spatially resolved atomic force microscopy, scanning Kelvin probe microscopy (SKPM), and colocalized Raman imaging to characterize the topography and electronic structure of the obtained graphitic domains and to develop a mechanistic description of the nucleation process. SKPM provides a direct spatially resolved means to differentiate conductive graphitic grains from the wide-bandgap SiC semiconductor. NEXAFS spectroscopy allows for evaluation of the planar alignment of the graphitic nuclei. The microwave processing method demonstrated here provides a facile route to patterning conductive domains on a ceramic component for applications in power electronics and multilayered ceramic capacitors.

1.
K. J.
Rao
,
B.
Vaidhyanathan
,
M.
Ganguli
, and
P. A.
Ramakrishnan
,
Chem. Mater.
11
,
882
(
1999
).
2.
M.
Oghbaei
and
O.
Mirzaee
,
J. Alloys Compd.
494
,
175
(
2010
).
3.
D.
Agrawal
, “
Advanced processing of metals and materials
,”
Proceedings of the Sohn International Symposium
, 27–31 August 2006, San Diego, CA (TMS, Warrendale, PA,
2006
), p.
183
.
4.
L. N.
Satapathy
,
P. D.
Ramesh
,
D.
Agrawal
, and
R.
Roy
,
Mater. Res. Bull.
40
,
1871
(
2005
).
5.
L.
Carassiti
,
A.
Jones
,
P.
Harrison
,
P. S.
Dobson
,
S.
Kingman
,
I.
MacLaren
, and
D. H.
Gregory
,
Energy Environ. Sci.
4
,
1503
(
2011
).
6.
S. K.
Thakur
,
T. S.
Kong
, and
M.
Gupta
,
Mater. Sci. Eng. A
452–453
,
61
(
2007
).
7.
J.
Lasri
,
P. D.
Ramesh
, and
L.
Schächter
,
J. Am. Ceram. Soc.
83
,
1465
(
2000
).
8.
J. M.
Kremsner
and
C. O.
Kappe
,
J. Org. Chem.
71
,
4651
(
2006
).
9.
C.
Berger
 et al.,
J. Phys. Chem. B
108
,
19912
(
2004
).
10.
J.
Hass
 et al.,
Appl. Phys. Lett.
89
,
143106
(
2006
).
11.
N.
Srivastava
,
G.
He
,
R. M.
Feenstra
, and
P. J.
Fisher
,
Phys. Rev. B
82
,
235406
(
2010
).
12.
K. V.
Emtsev
 et al.,
Nat. Mater.
8
,
203
(
2009
).
13.
C.
Berger
 et al.,
Science
312
,
1191
(
2006
).
14.
X.
Wu
,
X.
Li
,
Z.
Song
,
C.
Berger
, and
W. A.
de Heer
,
Phys. Rev. Lett.
98
,
136801
(
2007
).
15.
J. L.
Tedesco
 et al.,
Appl. Phys. Lett.
96
,
222103
(
2010
).
16.
J. K.
Hite
,
M. E.
Twigg
,
J. L.
Tedesco
,
A. L.
Friedman
,
R. L.
Myers-Ward
,
C. R.
Eddy
, and
D. K.
Gaskill
,
Nano Lett.
11
,
1190
(
2011
).
17.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
18.
B. J.
Schultz
 et al.,
Nat. Commun.
2
,
372
(
2011
).
19.
V.
Lee
,
R. V.
Dennis
,
B. J.
Schultz
,
C.
Jaye
,
D. A.
Fischer
, and
S.
Banerjee
,
J. Phys. Chem. C
116
,
20591
(
2012
).
20.
S.
Lee
 et al.,
ACS Nano
4
,
7524
(
2010
).
21.
H.
Kishi
,
Y.
Mizuno
, and
H.
Chazono
,
Jpn. J. Appl. Phys.
42
,
1
(
2003
).
22.
H.
Morkoç
,
S.
Strite
,
G. B.
Gao
,
M. E.
Lin
,
B.
Sverdlov
, and
M.
Burns
,
J. Appl. Phys.
76
,
1363
(
1994
).
23.
Y.
Ohkawara
,
T.
Shinada
,
Y.
Fukada
,
S.
Ohshio
,
H.
Saitoh
, and
H.
Hiraga
,
J. Mater. Sci.
38
,
2447
(
2003
).
24.
A.
Birkel
,
L. E.
Darago
,
A.
Morrison
,
L.
Lory
,
N. C.
George
,
A. A.
Mikhailovsky
,
C. S.
Birkel
, and
R.
Seshadri
,
Solid State Sci.
14
,
739
(
2012
).
25.
M.
Nonnenmacher
,
M. P.
O'Boyle
, and
H. K.
Wickramasinghe
,
Appl. Phys. Lett.
58
,
2921
(
1991
).
26.
Z.
Ni
,
W.
Chen
,
X.
Fan
,
J.
Kuo
,
T.
Yu
,
A.
Wee
, and
Z.
Shen
,
Phys. Rev. B
77
,
115416
(
2008
).
27.
P.
Krautwasser
,
G. M.
Begun
, and
P.
Angelini
,
J. Am. Ceram. Soc.
66
,
424
(
1983
).
28.
X.
Qiang
,
H.
Li
,
Y.
Zhang
,
S.
Tian
, and
J.
Wei
,
Mater. Lett.
107
,
315
(
2013
).
29.
Y. Y.
Wang
,
Z. H.
Ni
,
T.
Yu
,
Z. X.
Shen
,
H. M.
Wang
,
Y. H.
Wu
,
W.
Chen
, and
A. T.
Shen Wee
,
J. Phys. Chem. C
112
,
10637
(
2008
).
30.
M. A.
Pimenta
,
G.
Dresselhaus
,
M. S.
Dresselhaus
,
L. G.
Cançado
,
A.
Jorio
, and
R.
Saito
,
Phys. Chem. Chem. Phys.
9
,
1276
(
2007
).
31.
A. C.
Ferrari
,
Solid State Commun.
143
,
47
(
2007
).
32.
D. S.
Lee
,
C.
Riedl
,
B.
Krauss
,
K.
Von Klitzing
,
U.
Starke
, and
J. H.
Smet
,
Nano Lett.
8
,
4320
(
2008
).
33.
C.
Faugeras
,
A.
Nerrière
,
M.
Potemski
,
A.
Mahmood
,
E.
Dujardin
,
C.
Berger
, and
W. A.
de Heer
,
Appl. Phys. Lett.
92
,
011914
(
2008
).
34.
V.
Lee
 et al.,
J. Phys. Chem. Lett.
1
,
1247
(
2010
).
35.
B. J.
Schultz
,
C.
Jaye
,
P. S.
Lysaght
,
D. A.
Fischer
,
D.
Prendergast
, and
S.
Banerjee
,
Chem. Sci.
4
,
494
(
2013
).
36.
X.
Gao
,
S.
Chen
,
T.
Liu
,
W.
Chen
,
A.
Wee
,
T.
Nomoto
,
S.
Yagi
,
K.
Soda
, and
J.
Yuhara
,
Phys. Rev. B
78
,
201404
(
2008
).
37.
K.
Kim
,
J.
Choi
,
H.
Lee
,
H.-K.
Lee
,
T.-H.
Kang
,
Y.-H.
Han
,
B.-C.
Lee
,
S.
Kim
, and
B.
Kim
,
J. Phys. Chem. C
112
,
13062
(
2008
).
38.
K.-J.
Kim
,
H.
Lee
,
J.
Choi
,
H.
Lee
,
M. C.
Jung
,
H. J.
Shin
,
T.-H.
Kang
,
B.
Kim
, and
S.
Kim
,
J. Phys. Condens. Matter.
22
,
045005
(
2010
).
40.
A.
Heiman
,
I.
Gouzman
,
S. H.
Christiansen
,
H. P.
Strunk
,
G.
Comtet
,
L.
Hellner
,
G.
Dujardin
,
R.
Edrei
, and
A.
Hoffman
,
J. Appl. Phys.
89
,
2622
(
2001
).
41.
R. V.
Dennis
,
B. J.
Schultz
,
C.
Jaye
,
X.
Wang
,
D. A.
Fischer
,
A. N.
Cartwright
, and
S.
Banerjee
,
J. Vac. Sci. Technol. B
31
,
041204
(
2013
).
42.
H.
Agren
,
O.
Vahtras
, and
V.
Carravetta
,
Chem. Phys.
196
,
47
(
1995
).
43.
R.-S. O. A.
Iwamoto
,
Y.
Nishi
,
Y.
Funase
,
T.
Yuasa
,
T.
Tomita
,
M.
Nagase
,
H.
Hibino
, and
H.
Yamaguchi
,
Jpn. J. Appl. Phys.
51
,
06FD06
(
2012
).
44.
J. A.
Robinson
 et al.,
Nano Lett.
9
,
2873
(
2009
).
45.
N.
Camara
,
G.
Rius
,
J.-R.
Huntzinger
,
A.
Tiberj
,
L.
Magaud
,
N.
Mestres
,
P.
Godignon
, and
J.
Camassel
,
Appl. Phys. Lett.
93
,
263102
(
2008
).
46.
M.
Kusunoki
,
T.
Suzuki
,
T.
Hirayama
,
N.
Shibata
, and
K.
Kaneko
,
Appl. Phys. Lett.
77
,
531
(
2000
).
You do not currently have access to this content.