A fundamental study on the development of a frequency mixer with a field emitter array was conducted. A grid to control the electron beam was introduced to the vacuum triode, which consisted of a field emitter array and an external collector. The transconductance of the field emitter array was 1.3 μS. It was found that the collector current varied linearly with the grid voltage, and the rate of the variation was estimated to be 0.9 μS. It was suggested that the fabricated tetrode would work as a frequency mixer. A preliminary experiment on the mixing of signals with frequencies of 10 and 15 kHz was performed, and the generation of signals with the sum and difference frequencies was confirmed. The possible operating frequency of the field emitter array-based vacuum frequency mixer will be 1 MHz or higher, using a larger field emitter array that can be operated at higher currents.

1.
R. H.
Good
, Jr.
and
E. W.
Müller
, in
Handbuch der Physik
, edited by
S.
Flügge
(
Springer
,
Berlin
,
1956
), p.
176
.
2.
H. H.
Busta
,
B. J.
Zimmerman
,
J. E.
Pogemiller
,
M. C.
Tringides
, and
C. A.
Spindt
,
J. Vac. Sci. Technol. B
11
,
400
(
1993
).
3.
Y.
Gotoh
,
W.
Ohue
,
K.
Endo
, and
H.
Tsuji
, “Electron emission properties of hafnium nitride field emitter arrays at elevated temperatures” (unpublished).
4.
G.
Gaertner
,
J. Vac. Sci. Technol. B
30
,
060801
(
2012
).
5.
M.
Nakamoto
and
J.
Moon
,
25th International Vacuum Nanoelectronics Conference
(IEEE, Piscataway,
2012
), p.
76
.
6.
J. W.
Palmour
,
H. S.
Kong
, and
R. F.
Davis
,
J. Appl. Phys.
64
,
2168
(
1988
).
7.
S.
Potbhare
,
N.
Goldsman
,
A.
Lelis
,
J. M.
McGarrity
,
F. B.
McLean
, and
D.
Habersat
,
IEEE Trans. Electron Devices
55
,
2029
(
2008
).
8.
M. J.
Palmer
,
R. W.
Johnson
,
T.
Autry
,
R.
Aguirre
,
V.
Lee
, and
J. D.
Scofield
,
IEEE Trans. Compon., Packag., Manuf. Technol.
2
,
208
(
2012
).
9.
H. H.
Busta
,
Vacuum Microelectronics
, edited by
W.
Zhu
(
John Wiley & Sons
,
New York
,
2001
), p.
289
.
10.
Y.
Honda
,
Y.
Takiguchi
,
N.
Egami
,
M.
Nanba
,
Y.
Saishu
,
K.
Nakamura
, and
M.
Taniguchi
,
J. Vac. Sci. Technol. B
29
,
04E104
(
2011
).
11.
K.
Uemura
,
S.
Kanemaru
, and
J.
Itoh
,
Jpn. J. Appl. Phys., Part 1
35
,
6629
(
1996
).
12.
J. P.
Calame
,
H. F.
Gray
, and
J. L.
Shaw
,
J. Appl. Phys.
73
,
1485
(
1993
).
13.
D. R.
Whaley
,
R.
Duggal
,
C. M.
Armstrong
,
C. L.
Bellow
,
C. E.
Holland
, and
C. A.
Spindt
,
IEEE Trans. Electron Devices
56
,
896
(
2009
).
14.
K.
Ikeda
,
W.
Ohue
,
K.
Endo
,
Y.
Gotoh
, and
H.
Tsuji
,
J. Vac. Sci. Technol. B
29
,
02B116
(
2011
).
15.
E. C.
Alvarez
and
D. E.
Fleckles
,
Introduction to Electron Tubes and Semiconductors
(
McGraw-Hill
,
New York
,
1965
), p.
125
.
16.
K.
Ikeda
,
Y.
Miyata
,
K.
Endo
,
Y.
Gotoh
,
H.
Tsuji
, and
J.
Ishikawa
,
22nd International Vacuum Nanoelectronics Conference
(IEEE, Piscataway,
2009
), p.
81
.
17.
T.
Sato
,
S.
Yamamoto
,
M.
Nagao
,
T.
Matsukawa
,
S.
Kanemaru
, and
J.
Itoh
,
J. Vac. Sci. Technol. B
21
,
1589
(
2003
).
18.
Y.
Gotoh
,
M. Y.
Liao
,
H.
Tsuji
, and
J.
Ishikawa
,
Jpn. J. Appl. Phys.
42
,
L778
(
2003
).
19.
M. Y.
Liao
,
Y.
Gotoh
,
H.
Tsuji
, and
J.
Ishikawa
,
J. Vac. Sci. Technol. A
22
,
214
(
2004
).
20.
G.
Hashiguchi
,
M.
Mimura
, and
H.
Fujita
,
Jpn. J. Appl. Phys.
34
,
L883
(
1995
).
21.
E. C.
Alvarez
and
D. E.
Fleckles
,
Introduction to Electron Tubes and Semiconductors
(
McGraw-Hill
,
New York
,
1965
), p.
82
.
22.
M.
Nagao
,
T.
Yoshida
,
T.
Nishi
, and
N.
Koda
,
25th International Vacuum Nanoelectronics Conference
(IEEE, Piscataway,
2012
), p.
110
.
23.
Y. M.
Wong
,
W. P.
Kang
,
J. L.
Davidson
,
D. V.
Kerns
, and
J. H.
Huang
,
J. Vac. Sci. Technol. B
25
,
627
(
2007
).
You do not currently have access to this content.