Scanning tunneling microscope studies of individual impurities in semiconductors explore challenges associated with future nanoscale electronics and can provide insight into how new materials properties such as ferromagnetic ordering arise from impurity interactions. Atomic manipulation and tunneling spectroscopy were employed to characterize and control the acceptor states of Co atoms substituted for Ga in the GaAs(110) surface. Three states were observed whose appearance in tunneling spectra was sensitive to the tip position within the acceptor complex. The energy of these states did not follow bending of the host bands due to the tip-induced electric field, but did respond to the Coulomb potential of nearby charged defects, such as As vacancies. By applying voltage pulses with the scanning tunneling microscope tip, the vacancies could be positioned on the surface, thus enabling tunable control over the Co acceptor states.

1.
T.
Shinada
,
S.
Okamoto
,
T.
Kobayashi
, and
I.
Ohdomari
,
Nature
437
,
1128
(
2005
).
2.
S.
Roy
and
A.
Asenov
,
Science
309
,
388
(
2005
).
3.
M.
Sanquer
,
X.
Jehl
,
M.
Pierre
,
B.
Roche
,
M.
Vinet
, and
R.
Wacquez
,
Engineering Materials
(
Springer
,
Berlin
,
2011
), pp.
251
263
.
4.
J. J. L.
Morton
,
D. R.
McCamey
,
M. A.
Eriksson
, and
S. A.
Lyon
,
Nature
479
,
345
(
2011
).
5.
B. E.
Kane
,
Nature
393
,
133
(
1998
).
6.
J. M.
Tang
,
J.
Levy
, and
M. E.
Flatté
,
Phys. Rev. Lett.
97
,
106803
(
2006
).
7.
M.
Fuechsle
,
J. A.
Miwa
,
S.
Mahapatra
,
H.
Ryu
,
S.
Lee
,
O.
Warschkow
,
L. C. L.
Hollenberg
,
G.
Klimeck
, and
M. Y.
Simmons
,
Nat. Nanotechnol.
7
,
242
(
2012
).
9.
D.
Kitchen
,
A.
Richardella
,
J. M.
Tang
,
M. E.
Flatté
, and
A.
Yazdani
,
Nature
442
,
436
(
2006
).
10.
F.
Marczinowski
,
J.
Wiebe
,
F.
Meier
,
K.
Hashimoto
, and
R.
Wiesendanger
,
Phys. Rev. B
77
,
115318
(
2008
).
11.
J. K.
Garleff
,
A. P.
Wijnheijmer
,
C. N.
v. d. Enden
, and
P. M.
Koenraad
,
Phys. Rev. B
84
,
075459
(
2011
).
12.
D. H.
Lee
and
J. A.
Gupta
,
Science
330
,
1807
(
2010
).
13.
D. H.
Lee
and
J. A.
Gupta
,
Nano Lett.
11
,
2004
(
2011
).
14.
D. H.
Lee
,
N. M.
Santagata
, and
J. A.
Gupta
,
Appl. Phys. Lett.
99
,
053124
(
2011
).
15.
J. M.
Tang
and
M.
Flatté
,
Phys. Rev. Lett.
92
,
047201
(
2004
).
16.
D. H.
Lee
, Ph.D. dissertation (
Ohio State University
,
2010
).
18.
D. S.
Kitchen
, Ph.D. dissertation (
University of Illinois, Urbana-Champaign
,
2006
).
19.
D.
Kitchen
,
A.
Richardella
, and
A.
Yazdani
,
J. Supercond.
18
,
23
(
2005
).
20.
A.
Richardella
,
D.
Kitchen
, and
A.
Yazdani
,
Phys. Rev. B
80
,
045318
(
2009
).
21.
J.
Garleff
,
C.
Çelebi
,
W.
Van Roy
,
J. M.
Tang
,
M.
Flatté
, and
P.
Koenraad
,
Phys. Rev. B
78
,
075313
(
2008
).
22.
R.
Feenstra
,
S.
Gaan
,
G.
Meyer
, and
K.
Rieder
,
Phys. Rev. B
71
,
125316
(
2005
).
23.
J.
Lee
,
S. M.
Perdue
,
D.
Whitmore
, and
V. A.
Apkarian
,
J. Chem. Phys.
133
,
104706
(
2010
).
24.
We note that we do not observe a direct Stark shift of the acceptor level due to the local electric field between tip and sample, at least within the ∼0.1 nm variation in tip height associated with a decade change in set current. While we do not quantitatively understand the effect, a qualitative explanation lies in the fact that the acceptor wavefunction is more extended in the plane of the sample than out of plane, which could lead to a greater sensitivity to in-plane electric fields caused by the charged adsorbates.
25.
P.
Mahadevan
and
A.
Zunger
,
Phys. Rev. B
69
,
115211
(
2004
).
You do not currently have access to this content.