Dense arrays of silicon and silicon germanium nanowires are fabricated using a top–down approach, which exploits the excellent patterning capabilities of inductively coupled plasmas. Using standard deep UV lithography on a previously deposited silicon oxide hard mask, silicon nanowires with straight and smooth sidewalls and a high aspect ratio greater than 60:1 can be obtained with SF6/O2/HBr/SiF4 plasma chemistries. The best results are obtained using Cl2/N2 high-density plasmas to pattern Si0.5Ge0.5 nanowires with an aspect ratio of 10:1.

1.
G.-J.
Zhang
 et al,
Nano Lett.
8
,
1066
(
2008
).
2.
Z.
Fan
,
D. J.
Ruebusch
,
A. A.
Rathore
,
R.
Kapadia
,
O.
Ergen
,
P. W.
Leu
, and
A.
Javey
,
Nano Res.
2
,
829
(
2009
).
3.
T.
Tada
,
V. V.
Poborchii
, and
T.
Kanayama
,
Microelectron. Eng.
63
,
259
(
2002
).
4.
Y.
Jiang
,
N.
Singh
,
T. Y.
Liow
,
G. Q.
Lo
,
D. S. H.
Chan
, and
D. L.
Kwong
,
Appl. Phys. Lett.
93
,
253105
(
2008
).
5.
G.
Rosaz
,
B.
Salem
,
N.
Pauc
,
A.
Potie
,
P.
Gentile
, and
T.
Baron
,
Appl. Phys. Lett.
99
,
193107
(
2011
).
6.
A.
Potie
,
T.
Baron
,
L.
Latu-Romain
,
G.
Rosaz
,
B.
Salem
,
L.
Montès
,
P.
Gentile
,
J.
Kreisel
, and
H.
Roussel
,
J. Appl. Phys.
110
,
024311
(
2011
).
7.
J.
Moon
,
J.
Ford
, and
S.
Yang
,
Polym. Adv. Technol.
17
,
83
(
2006
).
8.
J.
de Boor
,
N.
Geyer
,
J.
Wittemann
,
U.
Gösele1
, and
V.
Schmidt
,
Nanotechnology
21
,
095302
(
2010
).
9.
Y.-F.
Chang
,
Q.-R.
Chou
,
J.-Y.
Lin
, and
C.-H.
Lee
,
Appl. Phys. A
86
,
193
(
2007
).
10.
K. J.
Morton
,
G.
Nieberg
,
S.
Bai
, and
S. Y.
Chou
,
Nanotechnology
19,
345301
(
2008
).
11.
X.
Wang
,
W.
Zeng
,
G.
Lu
,
O. L.
Russo
, and
E.
Eisenbraun
,
J. Vac. Sci. Technol. B
25
,
1376
(
2007
).
12.
C.-H.
Choi
and
C.-J.
Kim
,
Nanotechnology
17
,
5326
(
2006
).
13.
G.
Craciun
,
M. A.
Blauw
,
E.
van der Drift
,
P. M.
Sarro
, and
P. J.
French
,
J. Micromech. Microeng.
12
,
390
(
2002
).
14.
R.
Dagostino
and
D. L.
Flamm
,
J. Appl. Phys.
52
,
162
(
1981
).
15.
T.
Syau
,
B. J.
Baliga
, and
R. W.
Hamaker
,
J. Electrochem. Soc.
138
,
3076
(
1991
).
16.
C. P.
Demic
,
K. K.
Chan
, and
J.
Blum
,
J. Vac. Sci. Technol. B
10
,
1105
(
1992
).
17.
V. K.
Singh
,
E. S. G.
Shaqfeh
, and
J. P.
McVittie
,
J. Vac. Sci. Technol. B
10
,
1091
(
1992
).
18.
V. A.
Yunkin
,
D.
Fischer
, and
E.
Voges
,
Microelectron. Eng.
23
,
373
(
1994
).
19.
S.
Gomez
,
R. J.
Belen
,
M.
Kiehlbauch
, and
E. S.
Aydil
,
J. Vac. Sci. Technol. A
23
,
1592
(
2005
).
20.
K. W.
Kok
,
W. J.
Yoo
, and
K.
Sooriakumar
,
J. Vac. Sci. Technol. B
20
,
154
(
2002
).
21.
E.
Dornel
 et al,
Appl. Phys. Lett.
91
,
233502
(
2007
).
22.
L.
Desvoivres
,
L.
Vallier
, and
O.
Joubert
,
J. Vac. Sci. Technol. B
19
,
420
(
2001
).
23.
C.
Monget
,
S.
Vallon
,
F. H.
Bell
,
L.
Vallier
, and
O.
Joubert
,
J. Electrochem. Soc.
144
,
2455
(
1997
).
24.
C.
Monget
,
A.
Schiltz
,
O.
Joubert
,
L.
Vallier
, and
M.
Guillermet
,
J. Vac. Sci. Technol. B
16
,
1833
(
1998
).
You do not currently have access to this content.