The growth of N-polar (In,Ga)N structures by plasma-assisted molecular beam epitaxy is studied. (In,Ga)N multiple quantum well samples with atomically smooth surface were grown and their good structural quality was confirmed by x-ray diffraction, scanning transmission electron microscopy, and defect selective etching. The In incorporation was higher in the N-polar than in the Ga-polar oriented crystal, consistent with previous reports. However, despite the good morphological and structural properties of these samples, no photoluminescence signal from the (In,Ga)N wells was detected. In contrast, a thick N-polar (In,Ga)N layer exhibited a broad peak at 620 nm in good agreement with the In content determined by x-ray diffraction. The potential source of the luminescence quenching in the N-polar (In,Ga)N multiple quantum wells is discussed and attributed either to a strong nonradiative recombination channel at the surface promoted by the electric field or to the high concentration of point defects at the interfaces of the quantum well structures.

1.
L. K.
Li
,
M. J.
Jurkovic
,
W. I.
Wang
,
J. M. V.
Hove
, and
P. P.
Chow
,
Appl. Phys. Lett.
76
,
1740
(
2000
).
2.
S.
Rajan
,
M.
Wong
,
Y.
Fu
,
F.
Wu
,
J. S.
Speck
, and
U. K.
Mishra
,
Jpn. J. Appl. Phys., Part 2
44
,
L1478
(
2005
).
3.
F.
Akyol
,
D. N.
Nath
,
E.
Gür
,
P. S.
Park
, and
S.
Rajan
,
Jpn. J. Appl. Phys., Part 1
50
,
052101
(
2011
).
4.
D. N.
Nath
,
E.
Guer
,
S. A.
Ringel
, and
S.
Rajan
,
J. Vac. Sci. Technol. B
29
,
021206
(
2011
).
5.
S.-H.
Han
,
D.-Y.
Lee
,
J.-Y.
Lim
,
J. W.
Lee
,
D.-J.
Kim
,
Y. S.
Kim
,
S.-T.
Kim
, and
S.-J.
Park
,
Jpn. J. Appl. Phys., Part 1
51
,
100201
(
2012
).
6.
H.
Masui
,
S.
Keller
,
N.
Fellows
,
N.
Fichtenbaum
,
M.
Furukawa
,
S.
Nakamura
,
U. K.
Mishra
, and
S. P.
DenBaars
,
Jpn. J. Appl. Phys., Part 1
48
,
071003
(
2009
).
7.
S.
Keller
,
N. A.
Fichtenbaum
,
M.
Furukawa
,
J. S.
Speck
,
S. P.
DenBaars
, and
U. K.
Mishra
,
Appl. Phys. Lett.
90
,
191908
(
2007
).
8.
I.
Grzegory
and
S.
Porowski
,
Thin Solid Films
367
,
281
(
2000
).
9.
M.
Siekacz
 et al.,
Phys. Status Solidi C
6
,
S917
(
2009
).
10.
H.
Turski
 et al.,
J. Vac. Sci. Technol. B
29
,
03C136
(
2011
).
11.
S.
Grzanka
, private communication (10 February 2012).
12.
M.
Siekacz
 et al.,
J. Appl. Phys.
110
,
063110
(
2011
).
13.
J. S.
Speck
and
S. J.
Rosner
,
Physica B
273–274
,
24
(
1999
).
14.
J.
Wu
,
W.
Walukiewicz
,
K.
Yu
,
J.
Ager
,
E.
Haller
,
H.
Lu
, and
W.
Schaff
,
Appl. Phys. Lett.
80
,
4741
(
2002
).
15.
Y.-L.
Lai
,
C.-P.
Liu
,
Y.-H.
Lin
,
R.-M.
Lin
,
D.-Y.
Lyu
,
Z.-X.
Peng
, and
T.-Y.
Lin
,
Appl. Phys. Lett.
89
,
151906
(
2006
).
16.
H.
Ng
and
A.
Cho
,
J. Vac. Sci. Technol. B
20
,
1217
(
2002
).
17.
R.
Jakiela
, Technical Report, Institute of Physics PAS, Warsaw, Poland,
2012
.
18.
D. F.
Storm
,
D. J.
Meyer
,
D. S.
Katzer
,
S. C.
Binari
,
T.
Paskova
,
E. A.
Preble
,
K. R.
Evans
,
L.
Zhou
, and
D. J.
Smith
,
J. Vac. Sci. Technol. B
30
,
02B113
(
2012
).
19.
D.
Huang
 et al.,
J. Vac. Sci. Technol. B
20
,
2256
(
2002
).
20.
H.
Xu
,
X.
Hu
,
X.
Xu
,
Y.
Shen
,
S.
Qu
,
C.
Wang
, and
S.
Li
,
Appl. Surf. Sci.
258
,
6451
(
2012
).
21.
U.
Karrer
,
O.
Ambacher
, and
M.
Stutzmann
,
Appl. Phys. Lett.
77
,
2012
(
2000
).
22.
P.
Lorenz
,
T.
Haensel
,
R.
Gutt
,
R. J.
Koch
,
J. A.
Schaefer
, and
S.
Krischok
,
Phys. Status Solidi B
247
,
1658
(
2010
).
23.
S.
Choi
,
T.-H.
Kim
,
P.
Wu
,
A.
Brown
,
H.
Everitt
,
M.
Losurdo
, and
G.
Bruno
,
J. Vac. Sci. Technol. B
27
,
107
(
2009
).
24.
H. W.
Jang
,
J.-H.
Lee
, and
J.-L.
Lee
,
Appl. Phys. Lett.
80
,
3955
(
2002
).
25.
G.
Cywiński
 et al.,
J. Vac. Sci. Technol. B
31
,
03C112
(
2013
).
26.
A. R.
Arehart
,
T.
Homan
,
M. H.
Wong
,
C.
Poblenz
,
J. S.
Speck
, and
S. A.
Ringel
,
Appl. Phys. Lett.
96
,
242112
(
2010
).
You do not currently have access to this content.