The authors report the ozonation of patterned, vertically aligned carbon nanotube (CNT) forests as a method of priming them for subsequent pseudo atomic layer deposition (ψ-ALD) (alternating layer deposition) of silica to produce microfabricated, CNT-templated thin layer chromatography (TLC) plates. Gas phase ozonation simplifies our deposition scheme by replacing two steps in our previous fabrication process: chemical vapor deposition of carbon and ALD of Al2O3, with this much more straightforward priming step. As shown by x-ray photoelectron spectroscopy (XPS), ozonation appears to prime/increase the number of nucleation sites on the CNTs by oxidizing them, thereby facilitating conformal growth of silica by ψ-ALD, where some form of priming appears to be necessary for this growth. (As shown previously, ψ-ALD of SiO2 onto unprimed CNTs is ineffective and leads to poor quality depositions.) In conjunction with a discussion of the challenges of good peak fitting of complex C 1s XPS narrow scans, the authors present an analysis of their C 1s data that suggests an increase in oxidized carbon, particularly the C=O group, with increasing oxygen content of the CNT forests. After coating with SiO2, the CNTs are removed by elevated temperature air oxidation, the SiO2 is rehydrated, and the plates are coated with 3-aminopropyltriethoxysilane (APTES). The resulting APTES-coated plates separate various fluorescent dyes giving results that are generally at least as good as those the authors reported previously with their more complicated fabrication/priming scheme. TLC plates with different geometries are microfabricated, where plates with narrower channels show longer run times (lower mobile phase velocities) and plates with narrower features appear to give higher efficiencies.

1.
J.
Song
 et al,
Adv. Funct. Mater.
21
,
1132
(
2011
).
2.
J.
Billen
and
G.
Desmet
,
J. Chromatogr. A
1168
,
73
(
2007
).
3.
J. H.
Knox
,
J. Chromatogr. A
831
,
3
(
1999
).
4.
S. S.
Kanyal
 et al,
J. Vac. Sci. Technol. B
31
,
031203
(
2013
).
5.
D. S.
Jensen
 et al,
Surf. Interface Anal.
(available online).
6.
D. S.
Jensen
,
S. S.
Kanyal
,
V.
Gupta
,
M. A.
Vail
,
A. E.
Dadson
,
M.
Engelhard
,
R.
Vanfleet
,
R. C.
Davis
, and
M. R.
Linford
,
J. Chromatogr. A
1257
,
195
(
2012
).
7.
D.
Hausmann
,
J.
Becker
,
S.
Wang
, and
R. G.
Gordon
,
Science
298
,
402
(
2002
).
8.
F.
Zhang
,
K.
Sautter
,
A. M.
Larsen
,
D. A.
Findley
,
R. C.
Davis
,
H.
Samha
, and
M. R.
Linford
,
Langmuir
26
,
14648
(
2010
).
9.
A. S.
Cavanagh
,
C. A.
Wilson
,
A. W.
Weimer
, and
S. M.
George
,
Nanotechnol.
20
,
255602
(
2009
).
10.
C. F.
Herrmann
,
F. H.
Fabreguette
,
D. S.
Finch
,
R.
Geiss
, and
S. M.
George
,
Appl. Phys. Lett.
87
,
123110
(
2005
).
11.
D. B.
Farmer
and
R. G.
Gordon
,
Electrochem. Solid-State Lett.
8
,
G89
(
2005
).
12.
D. B.
Farmer
and
R. G.
Gordon
,
Nano Lett.
6
,
699
(
2006
).
13.
J. D.
Whittaker
,
M.
Brink
,
G. A.
Husseini
,
M. R.
Linford
, and
R. C.
Davis
,
Appl. Phys. Lett.
83
,
5307
(
2003
).
14.
Q.
An
,
A. N.
Rider
, and
E. T.
Thostenson
,
Carbon
50
,
4130
(
2012
).
15.
O.
Byl
,
J.
Liu
, and
J. T.
Yates
,
Langmuir
21
,
4200
(
2005
).
16.
D. B.
Mawhinney
,
V.
Naumenko
,
A.
Kuznetsova
,
J. T.
Yates
,
J.
Liu
, and
R. E.
Smalley
,
J. Am. Chem. Soc.
122
,
2383
(
2000
).
17.
L. C.
Tang
,
H.
Zhang
,
J. H.
Han
,
X. P.
Wu
, and
Z.
Zhang
,
Compos. Sci. Technol.
72
,
7
(
2011
).
18.
X.
Lu
,
L.
Zhang
,
X.
Xu
,
N.
Wang
, and
Q.
Zhang
,
J. Phys. Chem. B
106
,
2136
(
2002
).
19.
H. E.
Hauck
and
M.
Schulz
,
J. Chromatogr. Sci.
40
,
550
(
2002
).
20.
H.
Hauck
and
M.
Schulz
,
Chromatographia
57
,
S313
(
2003
).
21.
H.
Hauck
,
O.
Bund
,
W.
Fischer
, and
M.
Schulz
,
J. Planar Chromatogr.
14
,
234
(
2001
).
22.
A. M.
Frolova
,
M. A.
Chukhlieb
,
A. V.
Drobot
,
A. P.
Kryshtal
,
L. P.
Loginova
, and
A. P.
Boichenko
,
Open Surf. Sci. J.
1
,
40
(
2009
).
23.
A. M.
Frolova
,
O. Y.
Konovalova
,
L. P.
Loginova
,
A. V.
Bulgakova
, and
A. P.
Boichenko
,
J. Sep. Sci.
34
,
2352
(
2011
).
24.
I.
Urbanova
and
F.
Svec
,
J. Sep. Sci.
34
,
2345
(
2011
).
25.
Y.
Han
,
P.
Levkin
,
I.
Abarientos
,
H.
Liu
,
F.
Svec
, and
J. M. J.
Fréchet
,
Anal. Chem.
82
,
2520
(
2010
).
26.
R.
Bakry
,
G. K.
Bonn
,
D.
Mair
, and
F.
Svec
,
Anal. Chem.
79
,
486
(
2006
).
27.
J. E.
Clark
and
S. V.
Olesik
,
J. Chromatogr. A
1217
,
4655
(
2010
).
28.
J. E.
Clark
and
S. V.
Olesik
,
Anal. Chem.
81
,
4121
(
2009
).
29.
L. W.
Bezuidenhout
and
M. J.
Brett
,
J. Chromatogr. A
1183
,
179
(
2008
).
30.
H. E.
Bergna
and
W. O.
Roberts
,
Colloidal Silica: Fundamentals and Applications
(
Taylor & Francis
,
Boca Raton
,
2006
).
31.
J.
Köhler
and
J. J.
Kirkland
,
J. Chromatogr. A
385
,
125
(
1987
).
32.
C. F.
Poole
and
S. K.
Poole
,
Anal. Chem.
61
,
1257
A (
1989
).
33.
S. K.
Poole
and
C. F.
Poole
,
J. Chromatogr. A
1218
,
2648
(
2011
).
34.
C. F.
Poole
,
The Essence of Chromatography
, 1st ed. (
Elsevier Science
,
Amsterdam
,
2003
).
35.
Instrumental HPTLC
, edited by
W.
Bertsch
,
S.
Hara
,
R. E.
Kaiser
, and
A.
Zlatkis
(
Huethig
,
Heidelberg
,
1980
).
36.
B.
Spangenberg
,
C. F.
Poole
, and
C.
Wiens
,
Quantitative Thin-Layer Chromatography: A Practical Survey
(
Springer
,
New York
,
2011
).
37.
M.
Prosek
,
A.
Golc-Wondra
, and
I.
Vovk
,
J. Planar Chromatogr.
14
,
100
(
2001
).
38.
C. F.
Poole
,
J. Planar Chromatogr.
1
,
373
(
1988
).
39.
F.
Zhang
,
R. J.
Gates
,
V. S.
Smentkowski
,
S.
Natarajan
,
B. K.
Gale
,
R. K.
Watt
,
M. C.
Asplund
, and
M. R.
Linford
,
J. Am. Chem. Soc.
129
,
9252
(
2007
).
40.
D. S.
Jensen
,
N.
Madaan
,
S. S.
Kanyal
,
M. A.
Vail
,
M.
Engelhard
, and
M. R.
Linford
, “
XPS of a multiwalled carbon nanotube forest grown via chemical vapor deposition from iron catalyst nanoparticles
,”
Surf. Sci. Spectra
(submitted).
41.
M.
Li
,
Y.
Gu
,
Y.
Liu
,
Y.
Li
, and
Z.
Zhang
,
Carbon
52
,
109
(
2013
).
42.
C. K.
Liu
,
J. M.
Wu
, and
H. C.
Shih
,
Sens. Actuators B
150
,
641
(
2010
).
43.
K. A.
Wepasnick
,
B. A.
Smith
,
J. L.
Bitter
, and
D.
Howard Fairbrother
,
Anal. Bioanal. Chem.
396
,
1003
(
2010
).
44.
J.
Yan
 et al,
Carbon
48
,
1731
(
2010
).
45.
C. M.
Chen
,
J. Q.
Huang
,
Q.
Zhang
,
W. Z.
Gong
,
Q. H.
Yang
,
M. Z.
Wang
, and
Y. G.
Yang
,
Carbon
50
,
659
(
2012
).
46.
C. M.
Chen
,
Q.
Zhang
,
M. G.
Yang
,
C. H.
Huang
,
Y. G.
Yang
, and
M. Z.
Wang
,
Carbon
50
,
3572
(
2012
).
47.
B. W.
Muir
,
S. L.
Mc Arthur
,
H.
Thissen
,
G. P.
Simon
,
H. J.
Griesser
, and
D. G.
Castner
,
Surf. Interface Anal.
38
,
1186
(
2006
).
48.
T. L.
Niederhauser
,
Y. Y.
Lua
,
G.
Jiang
,
S. D.
Davis
,
R.
Matheson
,
D. A.
Hess
,
I. A.
Mowat
, and
M. R.
Linford
,
Angew. Chem. Int. Ed.
41
,
2353
(
2002
).
49.
Y. Y.
Lua
,
W. J. J.
Fillmore
,
L.
Yang
,
M. V.
Lee
,
P. B.
Savage
,
M. C.
Asplund
, and
M. R.
Linford
,
Langmuir
21
,
2093
(
2005
).
50.
J.
Terry
,
M. R.
Linford
,
C.
Wigren
,
R.
Cao
,
P.
Pianetta
, and
C. E. D.
Chidsey
,
Appl. Phys. Lett.
71
,
1056
(
1997
).
51.
B. V.
Crist
,
J. Surf. Anal.
4
,
428
(
1998
).
52.
H.
Ganegoda
,
D. S.
Jensen
,
D.
Olive
,
L.
Cheng
,
C. U.
Segre
,
M. R.
Linford
, and
J.
Terry
,
J. Appl. Phys.
111
,
053705
(
2012
).
53.
K. L.
Mittal
, in
Surface Contamination: Genesis, Detection and Control
, edited by
K. L.
Mittal
(
Plenum
,
New York
,
1979
), Vol. 1, p.
3
.
54.
C.
Kingston
,
Y.
Martínez-Rubí
,
J.
Guan
,
M.
Barnes
,
C.
Scriver
,
R.
Sturgeon
, and
B.
Simard
,
Anal. Bioanal. Chem.
396
,
1037
(
2010
).
55.
B.
Fried
and
J.
Sherma
,
Thin-Layer Chromatography
, 4th ed. (
Marcel Dekker
,
New York
,
1999
).
56.
See supplementary material at http://dx.doi.org/10.1116/1.4801834 for experimental conditions and images of chromatograms (developed plates).

Supplementary Material

You do not currently have access to this content.