An ultraviolet single-mode fiber is used for beam transport, spatial filtering, and beam expansion for a Lloyd's mirror interferometer for laser interference lithography. Polarized laser light at 325 nm from a HeCd laser was coupled to a nonpolarization-maintaining step-index fiber, which preserved the linear polarization with an extinction ratio exceeding 100:1. The linear polarization direction of the output beam was remotely adjusted by a half-wave plate in front of the laser. The output beam profile matched the predicted far-field distribution of the single LP01 mode step-index fiber, with a numerical aperture of 0.09 at 325 nm. By illuminating a Lloyd's mirror interferometer with the beam produced by a single fiber, line/space photoresist patterns with a pitch of 220 nm were demonstrated. Various mechanical and optical aspects that may be helpful to other research groups which are building a simple but stable interference lithography system of this technique are discussed.

2.
S. R. J.
Brueck
,
Proc. IEEE
93
,
1704
(
2005
).
3.
M.
Walsh
, “
On the design of lithographic interferometers and their application
,” Ph D. dissertation (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
2004
).
4.
K.
Wallace
,
G.
Hardy
, and
E.
Serabyn
,
Nature
406
,
700
(
2000
).
5.
K. G.
Carpenter
,
C. J.
Schrijver
, and
M.
Karovska
,
Astrophys. Space Sci.
320
,
217
(
2009
).
6.
N. A.
Riza
,
F.
Perez
, and
A.
Bokhari
, U.S. patent 7,180,602 (20 February
2007
).
7.
A. N.
Vamivakas
,
S. B.
Ippolito
,
A. K.
Swan
,
M. S.
Ünlü
,
M.
Dogan
,
E. R.
Behringer
, and
B. B.
Goldberg
,
Opt. Lett.
32
,
970
(
2007
).
8.
T.
Dabbs
and
M.
Glass
,
Appl. Opt.
31
,
3030
(
1992
).
9.
S. B.
Ippolito
,
B. B.
Goldberg
, and
M. S.
Ünlü
,
J. Appl. Phys.
97
,
053105
(
2005
).
10.
Z.
Liu
,
B. B.
Goldberg
,
S. B.
Ippolito
,
A. N.
Vamivakas
,
M. S.
Ünlü
, and
R. P.
Mirin
,
Appl. Phys. Lett.
87
,
071905
(
2005
).
11.
M. M.
Liphardt
,
B. D.
Johs
,
C. M.
Herzinger
, and
P.
He
, U.S. patent 7,468,794 (23 December
2008
).
12.
E. I.
Gordon
, U.S. patent 4,581,529 (8 April
1986
).
13.
J. W.
Keen
,
D. F.
Buscher
, and
P. J.
Warner
,
Mon. Not. R. Astron. Soc.
326
,
1381
(
2001
).
14.
G.
Perrin
,
M.
Ollivier
, and
C. F.
Vincent
,
Proc. SPIE
4006
,
1007
(
2000
).
15.
O.
Wallner
,
W. R.
Leeb
, and
P. J.
Winzer
,
J. Opt. Soc. Am. A
19
,
2445
(
2002
).
16.
D. S.
Hobbs
,
B. D.
MacLeod
,
A. F.
Kelsey
,
M. A.
Leclerc
,
E.
Sabatino
 III
, and
D. P.
Resler
,
Proc. SPIE
3879
,
124
(
1999
).
17.
D. S.
Hobbs
, U.S. patent 6,088,505 (
11 July 2000
).
18.
J. D. C.
Jones
,
M.
Corke
,
A. D.
Kersey
, and
D. A.
Jackson
,
J. Phys. E
17
,
271
(
1984
).
19.
W. A.
Gambling
,
D. N.
Payne
,
H.
Matsumura
, and
R. B.
Dyott
,
Microwaves Opt. Acoust.
1
,
13
(
1976
).
20.
K.
Hotate
and
T.
Okoshi
,
Appl. Opt.
18
,
3265
(
1979
).
21.
J. A.
Buck
,
Fundamentals of Optical Fibers
, 2nd ed. (
John Wiley & Sons
,
Hoboken, New Jersey
,
2004
), pp.
56
66
.
22.
K.
Okamoto
,
Fundamentals of Optical Waveguides
, 2nd ed. (
Academic, Elsevier
,
Amsterdam
,
2006
), pp.
70
83
.
You do not currently have access to this content.