While freestanding clean graphene is essential for various applications, existing technologies for removing the polymer layer after transfer of graphene to the desired substrate still leave significant contaminations behind. The authors discovered a method for preparing ultraclean freestanding graphene utilizing the catalytic properties of platinum metals. Complete catalytic removal of polymer residues requires annealing in air at a temperature between 175 and 350 °C. Low-energy electron holography investigations prove that this method results in ultraclean freestanding graphene.

1.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
(
2005
).
2.
A. K.
Geim
and
K. S.
Novoselov
,
Nature Mater.
6
,
183
(
2007
).
3.
M.
Ishigami
,
J. H.
Chen
,
W. G.
Cullen
,
M. S.
Fuhrer
, and
E. D.
Williams
,
Nano Lett.
7
,
1643
(
2007
).
4.
A.
Reina
,
H.
Son
,
L.
Jiao
,
B.
Fan
,
M. S.
Dresselhaus
,
Z.
Liu
, and
J.
Kong
,
J. Phys. Chem. C
112
,
17741
(
2008
).
5.
Y.
Dan
,
Y.
Lu
,
N. J.
Kybert
,
Z.
Luo
, and
A. T. C.
Johnson
,
Nano Lett.
9
,
1472
(
2009
).
6.
R. R.
Nair
 et al,
Appl. Phys. Lett.
97
,
153102
(
2010
).
7.
X.
Li
 et al,
Science (N.Y.)
324
,
1312
(
2009
).
8.
Y.
Lee
,
S.
Bae
,
H.
Jang
,
S.
Jang
,
S.-E.
Zhu
,
S. H.
Sim
,
Y.
Il Song
,
B. H.
Hong
, and
J.-H.
Ahn
,
Nano Lett.
10
,
490
(
2010
).
9.
X.
Li
,
Y.
Zhu
,
W.
Cai
,
M.
Borysiak
,
B.
Han
,
D.
Chen
,
R. D.
Piner
,
L.
Colombo
, and
R. S.
Ruoff
,
Nano Lett.
9
,
4359
(
2009
).
10.
J. W.
Suk
,
A.
Kitt
,
C. W.
Magnuson
,
Y.
Hao
,
S.
Ahmed
,
J.
An
,
A. K.
Swan
,
B. B.
Goldberg
, and
R. S.
Ruoff
,
ACS Nano
5
,
6916
(
2011
).
11.
C. R.
Dean
 et al,
Nat. Nanotechnol.
5
,
722
(
2010
).
12.
Z. H.
Ni
,
H. M.
Wang
,
Z. Q.
Luo
,
Y. Y.
Wang
,
T.
Yu
,
Y. H.
Wu
, and
Z. X.
Shen
,
J. Raman Spectrosc.
41
,
479
(
2009
).
13.
J.-H.
Chen
,
C.
Jang
,
S.
Adam
,
M. S.
Fuhrer
,
E. D.
Williams
, and
M.
Ishigami
,
Nat. Phys.
4
,
377
(
2008
).
14.
A.
Nourbakhsh
 et al,
J. Phys. Chem. C
114
,
6894
(
2010
).
15.
Z.
Cheng
,
Q.
Zhou
,
C.
Wang
,
Q.
Li
,
C.
Wang
, and
Y.
Fang
,
Nano Lett.
11
,
767
(
2011
).
16.
R. S.
Pantelic
,
J. W.
Suk
,
C. W.
Magnuson
,
J. C.
Meyer
,
P.
Wachsmuth
,
U.
Kaiser
,
R. S.
Ruoff
, and
H.
Stahlberg
,
J. Struct. Biol.
174
,
234
(
2011
).
17.
R.
Zan
,
U.
Bangert
,
Q.
Ramasse
, and
K. S.
Novoselov
,
J. Phys. Chem. Lett.
3
,
953
(
2012
).
18.
R.
Zan
,
U.
Bangert
,
Q.
Ramasse
, and
K. S.
Novoselov
,
Nano Lett.
11
,
1087
(
2011
).
19.
J. Y.
Mutus
,
L.
Livadaru
,
J. T.
Robinson
,
R.
Urban
,
M. H.
Salomons
,
M.
Cloutier
, and
R. A.
Wolkow
,
New J. Phys.
13
,
63011
(
2011
).
20.
H.-W.
Fink
,
W.
Stocker
, and
H.
Schmid
,
Phys. Rev. Lett.
65
,
1204
(
1990
).
21.
H. W.
Fink
,
Recherche
22
,
964
(
1991
).
23.
S. P.
Surwade
,
Z.
Li
, and
H.
Liu
,
J. Phys. Chem. C
116
,
20600
(
2012
).
24.
See supplementary material at http://dx.doi.org/10.1116/1.4793746 for movies demonstrating the degradation of PMMA by Pt-metals.
25.
M. M.
Hirschler
and
C. L.
Beyler
,
SFPE Handbook of Fire Protection Engineering
, 3rd ed. (
NFPA
,
Quincy
,
2001
).
26.
S. I.
Stoliarov
,
P. R.
Westmoreland
,
M. R.
Nyden
, and
G. P.
Forney
,
Polymer
44
,
883
(
2003
).
27.
M. C.
Costache
,
D.
Wang
,
M. J.
Heidecker
,
E.
Manias
, and
C. A.
Wilkie
,
Polym. Adv. Technol.
17
,
272
(
2006
).
28.
D.
Gabor
,
Nature
161
,
777
(
1948
).
29.
H. W.
Fink
,
Phys. Scr.
38
,
260
(
1988
).
30.
J.-N.
Longchamp
,
T.
Latychevskaia
,
C.
Escher
, and
H.-W.
Fink
,
Appl. Phys. Lett.
101
,
113117
(
2012
).

Supplementary Material

You do not currently have access to this content.