High κ gadolinium oxide thin layers were deposited on silicon by high-pressure sputtering (HPS). In order to optimize the properties for microelectronics applications, different deposition conditions were used. Ti (scavenger) and Pt (nonreactive) were e-beam evaporated to fabricate metal–insulator–semiconductor (MIS) devices. According to x-ray diffraction, x-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, polycrystalline stoichiometric Gd2O3 films were obtained by HPS. The growth rate decreases when increasing the deposition pressure. For relatively thick films (40 nm), a SiOx interface as well as the formation of a silicate layer (GdSiOx) is observed. For thinner films, in Ti gated devices the SiOx interface disappears but the silicate layer extends over the whole thickness of the gadolinium oxide film. These MIS devices present lower equivalent oxide thicknesses than Pt gated devices due to interface scavenging. The density of interfacial defects Dit is found to decrease with deposition pressure, showing a reduced plasma damage of the substrate surface for higher pressures. MIS with the dielectric deposited at higher pressures also present lower flatband voltage shifts ΔVFB in the CHFVG hysteresis curves.

1.
J. A.
Gupta
,
D.
Landheer
,
J. P.
McCaffrey
, and
G. I.
Sproule
,
Appl. Phys. Lett.
78
,
1718
(
2001
).
2.
S.
Dueñas
 et al.,
J. Electrochem. Soc.
154
,
G207
(
2007
).
3.
J. A.
Kittl
 et al.,
Microelectron. Eng.
86
,
1789
(
2009
).
4.
J.
Kwo
 et al.,
Appl. Phys. Lett.
77
,
130
(
2000
).
5.
M.
Hong
,
J.
Kwo
,
A. R.
Kortan
,
J. P.
Mannaerts
, and
A. M.
Sergent
,
Science
283
,
1897
(
1999
).
6.
J.
Robertson
,
Microelectron. Eng.
86
,
1558
(
2009
).
7.
H.
Guo
,
X.
Yang
,
T.
Xiao
,
W.
Zhang
,
L.
Lou
, and
J.
Mugnier
,
Appl. Surf. Sci.
230
,
215
(
2004
).
8.
X. D.
Wu
,
L.
Luo
,
R.
Muenchausen
,
S. R.
Foltyn
,
R. C.
Dye
, and
N. S.
Nogar
,
J. Electron. Mater.
21
,
495
(
1992
).
9.
C.
Dujardin
,
C.
Le Luyer
,
C.
Martinet
,
C.
Garapon
,
J.
Mugnier
,
A. G.
Murrillo
,
C.
Pedrini
, and
T.
Martin
,
Nucl. Instrum. Methods Phys. Res. A
537
,
237
(
2005
).
10.
G.
Bonnet
,
M.
Lachkar
,
J. P.
Larpin
, and
J. C.
Colson
,
Solid State Ionics
72
,
344
(
1994
).
11.
M.
Hong
,
A. R.
Kortan
,
J.
Kwo
,
J. P.
Mannaerts
,
T.
Boone
,
J. J.
Krajewski
,
Z. H.
Lu
,
K. C.
Hsich
and
K. Y.
Cheng
,
J. Vac. Sci. Technol. B
18
,
1688
(
2000
)
12.
A. C.
Jones
,
H. C.
Aspilanll
,
P. R.
Chalker
,
R. J.
Potter
,
K.
Kukli
,
A.
Rahtu
,
M.
Ritala
, and
M.
Leskela
,
J. Mater, Chem.
14
,
3101
(
2004
).
13.
M. P.
Singh
,
C. S.
Thakur
,
K.
Shalini
,
S.
Banerjee
,
N.
Bhat
, and
S. A.
Shivashankar
,
J. Appl. Phys.
96
,
5631
(
2004
).
14.
T. M.
Pang
,
C. S.
Liao
,
H. H.
Hsu
,
C. L.
Chen
, and
J. C.
Wang
,
Appl. Phys. Lett.
87
,
262908
(
2005
)
15.
H.
Iwai
 et al. in
Physics and Technology of High-k Gate Dielectrics I
, edited by
S.
Kar
,
D.
Misra
,
R.
Singh
, and
F.
Gonzalez
, The Electrochemical Society Proceedings Series, PV 2002-28 (
Electrochemical Society
,
Pennington, NJ
,
2002
), p.
27
.
16.
J.
Niinistö
,
N.
Petrova
,
M.
Putkonen
,
L.
Niinistö
,
K.
Arstila
, and
T.
Sajavaara
,
J. Cryst. Growth
285
,
191
(
2005
).
17.
S.
Pal
,
S. K.
Ray
,
B. R.
Chakraborty
,
S. K.
Lahiri
, and
D. N.
Bose
,
J. Appl. Phys.
90
,
4103
(
2001
).
18.
P. C.
Feijoo
,
Á.
del Prado
,
M.
Toledano-Luque
,
E.
San Andrés
, and
M. L.
Lucía
,
J. Appl. Phys.
107
,
084505
(
2010
).
19.
M.
Toledano-Luque
,
E.
San Andrés
,
J.
Olea
,
Á.
del Prado
,
I.
Mártil
,
W.
Bohne
,
J.
Röhich
, and
E. J.
Strub
,
Mater. Sci. Semicond. Process
9
,
1020
(
2006
).
20.
E.
San Andrés
,
M.
Toledano-Luque
,
Á.
del Prado
,
M. A.
Navacerrada
,
I.
Mártil
,
G.
González-Díaz
,
W.
Bohne
,
J.
Röhrich
, and
E.
Strub
,
J. Vac. Sci. Technol. A
23
,
1523
(
2005
).
21.
S.
Dueñas
 et al.,
Semicond. Sci. Technol.
20
,
1044
(
2005
).
22.
W.
Kern
and
D.
Puotinen
,
RCA Rev.
31
,
187
(
1970
).
23.
W. A.
Hill
and
C. C.
Coleman
,
Solid-State Electron.
23
,
987
(
1980
).
24.
M.
Toledano-Luque
,
M. L.
Lucía
,
Á.
del Prado
,
E.
San Andrés
,
I.
Mártil
, and
G.
González-Díaz
,
Appl. Phys. Let.
91
,
191502
(
2007
).
25.
A. A.
Dakhel
,
J. Opt. A, Pure Appl. Opt.
3
,
452
(
2001
).
26.
N.
Nagai
and
H.
Hashimoto
,
Appl. Surf. Sci.
172
,
307
(
2001
).
27.
A. C.
Diebold
,
D.
Venables
,
Y.
Chabal
,
D.
Muller
,
M.
Weldon
, and
E.
Garfunkel
,
Mater Sci. Semicond. Process
2
,
103
(
1999
).
28.
R. A. B.
Devine
,
Appl. Phys. Lett.
68
,
3108
(
1996
).
29.
A.
Hardy
 et al.,
Appl. Surf. Sci.
255
,
7812
(
2009
).
30.
M. C.
Ferrara
,
D.
Altamura
,
M.
Schioppa
,
L.
Tapfer
,
E.
Nichelatti
,
L.
Pilloni
, and
M.
Montecchi
,
J. Phys. D: Appl. Phys.
41
,
225408
(
2008
).
31.
A.
García-Murillo
,
C.
Le Luyer
,
C.
Dujardin
,
C.
Pedrini
, and
J.
Mugnier
,
Opt. Mat.
16
,
39
(
2001
).
32.
D. C.
Bradley
,
R. C.
Mehrotra
, and
D. P.
Gaur
,
Metal Alkoxides
(
Academic
,
New York
,
1978
).
33.
WWW-MINCRYST, Crystallographic and Crystallochemical Database for Minerals and Their Structural Analogues, http://database.iem.ac.ru/mincryst (cart OXIDE_Gd-5948) (2012).
34.
Y.
Uwamino
,
Y.
Ishizuka
, and
H.
Yamatera
,
J. Electron Spectrosc. Relat. Phenom.
34
,
69
(
1984
).
35.
C. D.
Wagner
,
L. E.
Davis
,
M. V.
Zeller
,
J. A.
Taylor
,
R. H.
Raymond
, and
L. H.
Gale
,
Surf. Interface Anal.
3
,
211
(
1981
).
36.
A. G.
Znamenskii
and
V. A.
Marchenko
,
Tech. Phys.
43
,
766
(
1998
).
37.
D.
Dewulf
,
N.
Peys
,
S.
Van Elshocht
,
G.
Rampelberg
,
C.
Detavernier
,
S.
De Gendt
,
A.
Hardy
, and
M. K.
Van Bael
,
Microelectron. Eng.
88
,
1338
(
2011
).
38.
S.
Van Elshocht
 et al.,
J. Vac. Sci. Technol. A
26
,
724
(
2008
).
39.
H.-S.
Huang
,
P.
Samanta
,
T.-J.
Tzeng
,
S.-Y.
Chen
, and
C.-H.
Liu
,
Appl. Phys. Lett.
100
,
023501
(
2012
).
40.
C. S.
Kang
,
H.-J.
Cho
,
R.
Choi
,
Y.-H.
Kim
,
C. Y.
Kang
,
S. J.
Rhee
,
C.
Choi
,
M. S.
Akbar
, and
J. C.
Lee
,
IEEE Trans. Electron Devices
51
,
220
(
2004
).
41.
M.
Koike
,
T.
Ino
,
Y.
Kamimuta
,
M.
Koyama
,
Y.
Kamata
,
M.
Suzuki
,
Y.
Mitani
,
A.
Nishiyama
, and
Y.
Tsunashima
,
IEDM Tech. Dig.
2003
,
4
7
.
42.
H.
Kim
,
P. C.
McIntyre
,
C. O.
Chui
,
K. C.
Saraswat
, and
S.
Stemmer
,
J. Appl. Phys.
96
,
3467
(
2004
).
43.
M.
Iwanowicz
,
J.
Jasinski
,
G.
Głuszko
,
L.
Łukasiak
,
A.
Jakubowski
,
H.
Gottlob
, and
M.
Schmidt
,
Microelectron. Reliab.
51
,
1178
(
2011
).
44.
H. D. B.
Gottlob
 et al.,
Microelectron. Eng.
86
,
1642
(
2009
).
45.
M. A.
Pampillón
,
P. C.
Feijoo
,
E.
San Andrés
,
M.
Toledano-Luque
,
Á.
del Prado
,
A. J.
Blázquez
, and
M. L.
Lucía
,
Microelectron. Eng.
88
,
1357
(
2011
).
46.
See www.environmentalchemistry.com/yogi/periodic for electron work functions values.
47.
E.
Lipp
,
M.
Eizenberg
,
M.
Czernohorsky
, and
H. J.
Osten
,
Appl. Phys. Lett.
93
,
193513
(
2008
).
48.
Y.
Morita
,
S.
Migita
,
W.
Mizubayashi
, and
H.
Ota
,
Jpn. J. Appl. Phys., Part 1
50
,
10PG01
(
2011
).
You do not currently have access to this content.