Copper phthalocyanine-based organic thin-film transistors (OTFTs) with gate dielectric made by different combinations of ZrO2 and Al2O3 are fabricated. Experimental results show that as compared to the OTFTs with ZrO2/Al2O3 stacked and Al2O3/ZrO2/Al2O3 sandwiched gate dielectric, the device fabricated with the Al2O3/ZrO2 stacked gate dielectric manifests better electrical properties such as larger on/off ratio, smaller subthreshold slope, and higher carrier mobility. This could be explained by the fact that Al2O3 has good interface properties with CuPc and can act as a barrier layer, which prevents intermixing of materials at the organic/insulator interface and can slow oxygen diffusion through Al-O matrix, thus suppressing interfacial trap density. The gate-bias stress effect on the performance of OTFTs is also investigated. It is found that the threshold voltage shifts toward positive direction with stress time under a negative gate bias voltage. Longer stress times cause more degradation of the subthreshold and on/off ratio, probably due to more defect-state creation in the channel and an increase of interfacial traps and oxide charges in the dielectric during stress. Results also indicate that OTFTs with Al2O3 interlayer between the high-k dielectric and the gate electrode have less degradation in subthreshold and on/off ratio after a 3600-s stress. The involved mechanism lies in that the Al2O3 interlayer at the high-k dielectric/gate electrode interface can effectively block the injection of electrons from the gate electrode into the high-k material during electrical stress and thus less stress-induced interfacial traps and negative oxide charges in the devices. The electrical characteristics of the OTFTs after the removal of gate bias for a period of time are also studied.

1.
C. D.
Dimitrakopoulos
and
P. R. L.
Malenfant
,
Adv. Mater.
14
,
99
(
2002
).
3.
S. M.
Goetz
,
C. M.
Erlen
,
H.
Grothe
,
B.
Wolf
,
P.
Lugli
, and
G.
Scarpa
,
Org. Electron.
10
,
573
(
2009
).
4.
V.
Subramanian
,
P. C.
Chang
,
J. B.
Lee
,
S. E.
Molesa
, and
S. K.
Volkman
,
IEEE Trans. Compon. Packag. Technol.
28
,
742
(
2005
).
5.
J.
Tardy
,
M.
Erouel
,
A. L.
Deman
,
A.
Gagnaire
,
V.
Teodorescu
,
M. G.
Blanchin
,
B.
Canut
,
A.
Barau
, and
M.
Zaharescu
,
Microelectron. Reliab.
47
,
372
(
2007
).
6.
C.
Bartic
,
H.
Jansen
,
A.
Campitelli
, and
S.
Borghs
,
Org. Electron.
3
,
65
(
2002
).
7.
N.
Hiroshiba
,
R.
Kumashiro
,
K.
Tanigaki
,
T.
Takenobu
,
Y.
Iwasa
,
K.
Kotani
,
I.
Kawayama
, and
M.
Tonouchi
,
Appl. Phys. Lett.
89
,
152110
(
2006
).
8.
M. F.
Chang
,
P. T.
Lee
,
S. P.
McAlister
, and
A.
Chin
,
IEEE Electron Device Lett.
29
,
215
(
2008
).
9.
Q. J.
Cai
,
Y.
Gan
,
M. B. C.
Park
,
H. B.
Yang
,
Z. S.
Lu
,
Q. L.
Song
,
C. M.
Li
, and
Z. L.
Dong
,
Appl. Phys. Lett.
93
,
113304
(
2008
).
10.
R. K.
Nahar
,
V.
Singh
, and
A.
Sharma
,
J. Mater. Sci.: Mater. Electron.
18
,
615
(
2007
).
11.
B. H.
Lee
,
S. C.
Song
,
R.
Choi
, and
P.
Kirsch
,
IEEE Trans. Electron Devices
55
,
8
(
2008
).
12.
J.
Veres
,
S. D.
Ogier
,
S. W.
Leeming
,
D. C.
Cupertino
, and
S. M.
Khaffaf
,
Adv. Funct. Mater.
13
,
199
(
2003
).
13.
A. F.
Stassen
,
R. W. I.
de Bore
,
N. N.
Iosad
, and
A. F.
Morpurgo
,
Appl. Phys. Lett.
85
,
3899
(
2004
).
14.
W. M.
Tang
,
W. T.
Ng
,
M. G.
Helander
,
M. T.
Greiner
, and
Z. H.
Lu
,
J. Vac. Sci. Technol. B
26
,
1100
(
2010
).
15.
Y. R.
Liu
,
L. F.
Deng
,
R. H.
Yao
, and
P. T.
Lai
,
IEEE Trans. Device Mater. Reliab.
10
,
233
(
2010
).
16.
Y.
Bai
,
X.
Liu
,
L.
Chen
,
K.
Haq
,
M. A.
Khan
,
Q. Q.
Zhu
,
X. Y.
Jiang
, and
Z. L.
Zhang
,
Microelectron. J.
38
,
1185
(
2007
).
17.
A. L.
Deman
and
J.
Tardy
,
Mater. Sci. Eng. C
26
,
421
(
2006
).
18.
Y. H.
Kim
,
J. H.
Kwon
,
S. Il
Shin
,
B. Y.
Oh
,
H. G.
Park
,
K. K.
Paek
,
B. K.
Ju
, and
D. S.
Seo
,
Electrochem. Solid-State Lett.
12
,
H305
(
2009
).
19.
Y. L.
Tu
,
H. L.
Lin
,
L. L.
Chao
,
D.
Wu
,
C. S.
Tsai
,
C.
Wang
,
C. F.
Huang
,
C. H.
Lin
, and
J.
Sun
,
Tech. Digest–Symp. VLSI
2003
,
79
.
20.
T.
Ishikawa
,
D.
Kodama
,
Y.
Matsui
,
M.
Hiratani
,
T.
Furusawa
, and
D.
Hisamoto
,
Tech. Digest–Int. Electron Devices Meet.
2002
,
940
.
21.
J. H.
Lee
 et al.,
Tech. Digest-Int. Electron Devices Meet.
2002
,
221
.
22.
S. J.
Kim
,
B. J.
Cho
,
M. B.
Yu
,
M. F.
Li
,
Y. Z.
Xiong
,
C.
Zhu
,
A.
Chin
, and
D. L.
Kwong
,
IEEE Electron Device Lett.
26
,
625
(
2005
).
23.
G.
Wang
,
D.
Moses
,
A. J.
Heeger
,
H. M.
Zhang
,
M.
Narasimhan
, and
R. E.
Demaray
,
J. Appl. Phys.
95
,
316
(
2004
).
24.
J. H.
Lee
 et al.,
Tech. Digest–Int. Electron Devices Meet.
2000
,
645
.
25.
S.
Chang
,
Y. W.
Song
,
S.
Lee
,
S. Y.
Lee
, and
B. K.
Ju
,
Appl. Phys. Lett.
92
,
192104
(
2008
).
26.
W. H.
Ha
,
M. H.
Choo
,
and S.
Im
,
J. Non-Cryst. Solids
303
,
78
(
2002
).
27.
S.
Richter
,
M.
Ploetner
,
W. J.
Fischer
,
M.
Schneider
,
P. T.
Nguyen
,
W.
Plieth
,
N.
Kiriy
, and
H. J. P.
Adler
,
Thin Solid Films
477
,
140
(
2005
).
28.
L. A.
Majewski
,
M.
Grell
,
S. D.
Ogier
, and
J.
Veres
,
Org. Electron.
4
,
27
(
2003
).
29.
M.
McDowell
,
I. G.
Hill
,
J. E.
McDermott
,
S. L.
Bernasek
, and
J.
Schwartz
,
Appl. Phys. Lett.
88
,
073505
(
2006
).
30.
L.
Fumagalli
,
D.
Natali
,
M.
Sampietro
,
E.
Peron
,
F.
Perissinotti
,
G.
Tallarida
, and
S.
Ferrari
,
Org. Electron.
9
,
198
(
2008
).
31.
J. H.
Lee
,
S. H.
Kim
,
G. H.
Kim
,
S. C.
Lim
,
H.
Lee
,
J.
Jang
, and
T.
Zyung
,
Synth. Met.
139
,
445
(
2003
).
32.
K. H.
Cheng
,
W. M.
Tang
,
L. F.
Deng
,
C. H.
Leung
,
P. T.
Lai
, and
C. M.
Che
,
J. Appl. Phys.
104
,
116107
(
2008
).
33.
D.
Knipp
,
R. A.
Street
,
A.
Volkel
, and
J.
Ho
,
J. Appl. Phys.
93
,
347
(
2003
).
34.
K.
Xiao
,
Y.
Liu
,
G.
Yu
, and
D.
Zhu
,
Appl. Phys. A: Mater. Sci. Process.
77
,
367
(
2003
).
35.
S.
Nenon
,
D.
Kanehira
,
N.
Yoshimoto
,
F.
Fages
, and
C. V.
Ackermann
,
Thin Solid Films
518
,
5593
(
2010
).
36.
Z.
Bao
,
A. J.
Lovinger
, and
A.
Dodabalapur
,
Appl. Phys. Lett.
69
,
3066
(
1996
).
37.
J.
Puigdollers
,
C.
Voz
,
M.
Fonrodona
,
S.
Cheylan
,
M.
Stella
,
J.
Andreu
,
M.
Vetter
, and
R.
Alcubilla
,
J. Non-Cryst. Solids
352
,
1778
(
2006
).
38.
T.
Nonaka
 et al.,
Thin Solid Films
256
,
262
(
1995
).
39.
B.
Cheng
 et al.,
IEEE Trans. Electron Devices
46
,
1537
(
1999
).
40.
X. H.
Zhang
,
B.
Domercq
,
X.
Wang
,
S.
Yoo
,
T.
Kondo
,
Z. L.
Wang
, and
B.
Kippelen
,
Org. Electron.
8
,
718
(
2007
).
41.
S.
Ramanathan
,
D.
Chi
,
P. C.
McIntyre
,
C. J.
Wetteland
, and
J. R.
Tesmer
,
J. Electrochem. Soc.
150
,
F110
(
2003
).
42.
S. J.
Ding
 et al.,
IEEE Electron Device Lett.
24
,
730
(
2003
).
43.
H. W.
Zan
and
S. C.
Kao
,
IEEE Electron Device Lett.
29
,
155
(
2008
).
44.
L. M.
Lin
and
P. T.
Lai
,
J. Appl. Phys.
102
,
054515
(
2007
).
45.
K. K.
Hung
,
P. K.
Ko
,
C.
Hu
, and
Y. C.
Cheng
,
IEEE Electron Device Lett.
11
,
90
(
1990
).
46.
D. M.
Fleetwood
,
P. S.
Winokur
,
R. A.
Reber
,
T. L.
Meisenheimer
,
M. R.
Shaneyfelt
, and
L. C.
Riewe
,
J. Appl. Phys.
73
,
5058
(
1993
).
47.
T. L.
Tewksbury
and
H. S.
Lee
,
IEEE J. Solid-State Circuits
29
,
239
(
1994
).
48.
R. E.
Paulsen
,
R. R.
Siergiej
,
M. L.
French
, and
M. H.
White
,
IEEE Electron Device Lett.
13
,
627
(
1992
).
49.
S.
Dimitrijev
,
P.
Tanner
, and
H. B.
Harrison
,
Microelectron. Reliab.
39
,
441
(
1999
).
You do not currently have access to this content.