Talbot effect immersion lithography was investigated to improve resolution based on simulation results. The resolution limit of typical projection optics is determined by the wavelength λ of the light source and the numerical aperture. Alternatively, the Talbot effect forms self-images with no projection optics. For our simulations, the authors proposed using a mask with a Cr pattern illuminated by 193 nm ArF laser. The authors also assumed that the gap under the mask was filled with high-index immersion fluid of n = 1.64. The finite difference time domain (FDTD) optical simulation is shown for various pitches from 110 to 200 nm. So far, the distance of the self-imaging period has been estimated by second-order approximation, but the estimated result is found to differ significantly from the FDTD result. The periodic distance from low-order diffractive rays should be estimated by a higher-order approximation or an analytical method. Using Talbot effect immersion lithography, the one-dimensional line-and-space pattern of 60 nm pitch and the two-dimensional contact hole of 70 nm pitch can be transferred by a 193 nm light source.

1.
H.
Kawata
,
J. M.
Carter
,
A.
Yen
, and
H. I.
Smith
,
Microelectron. Eng.
9
,
31
(
1989
).
2.
S.
Owa
and
H.
Nagasaka
,
Proc. SPIE
5040
,
724
(
2003
).
3.
B. J.
Lin
,
J. Microlithogr., Microfabr., Microsyst.
3
,
377
(
2004
).
4.
H.
Sewell
,
J.
Mulkens
,
D.
McCafferty
,
L.
Markoya
,
B.
Streefkerk
, and
P.
Graeupner
,
Proc. SPIE
6154
,
615406
(
2006
).
5.
J.
Mulkens
,
M.
Leenders
,
S.
Donders
,
D.
McCafferty
,
H.
Sewell
,
L.
Markoya
, and
P.
Graupner
, 3rd International Symposium on Immersion Lithography, Kyoto, AO-32, 2–5 October
2006
(unpublished).
6.
T.
Miyamatsu
,
Y.
Wang
,
M.
Shima
,
S.
Kusumoto
,
T.
Chiba
,
H.
Nakagawa
,
K.
Hieda
, and
T.
Shimokawa
,
Proc. SPIE
5753
,
10
(
2005
).
7.
C.-Moon
Lim
 et al.,
Proc. SPIE
6154
,
615410
(
2006
).
8.
M.
Maenhoudt
,
J.
Versluijs
,
H.
Struyf
,
J.
Van Olmen
, and
M.
Van Hove
,
Proc. SPIE
5754
,
1508
(
2005
).
9.
Y.-K.
Choi
,
T.-J.
King
, and
C.
Hu
,
IEEE Trans. Electron Devices
49
,
436
(
2002
).
10.
V. V.
Rovner
,
T.
Jhaveri
,
D.
Morris
,
A.
Strojwas
, and
L.
Pileggi
,
Proc. SPIE
7974
,
79740I
(
2011
).
11.
B. J.
Lin
,
Microelectron. Eng.
86
,
442
(
2009
).
12.
13.
14.
J. M.
Cowley
and
A. F.
Moodie
,
Proc. Phys. Soc. B
70
,
486
(
1957
).
15.
J. T.
Winthrop
and
C. R.
Worthington
,
J. Opt. Soc. Am.
55
,
373
(
1965
).
16.
A. W.
Lohmann
and
D. E.
Silva
,
Opt. Commun.
2
,
413
(
1971
).
17.
O.
Bryngdahl
,
J. Opt. Soc. Am.
63
,
416
(
1973
).
18.
D. D.
Flanders
,
A. M.
Hawryluk
, and
H. I.
Smith
,
J. Vac. Sci. Technol.
16
,
1949
(
1979
).
19.
A.
Isoyan
,
F.
Jiang
,
Y. C.
Cheng
,
F.
Cerrina
,
P.
Wachulak
,
L.
Urbanski
,
J.
Rocca
,
C.
Menoni
, and
M.
Marconi
,
J. Vac. Sci. Technol. B
27
,
2931
(
2009
).
20.
L.
Stuerzebecher
,
T.
Harzendorf
,
U.
Vogler
,
U. D.
Zeitner
, and
R.
Voelkel
,
Opt. Express
18
,
19485
(
2010
).
21.
M. C.
Marconi
,
P. W.
Wachulak
,
L.
Urbanski
,
A.
Isoyan
,
F.
Jiang
,
Y. C.
Cheng
,
J. J.
Rocca
,
C. S.
Menoni
, and
F.
Cerrina
,
Proc. SPIE
7451
,
74510J
(
2009
).
22.
P. W.
Wachulak
 et al.,
Proc. SPIE
7746
,
774609
(
2010
).
23.
L.
Urbanski
,
M. C.
Marconi
,
A.
Isoyan
,
A.
Stain
,
C. S.
Menoni
, and
J. J.
Rocca
,
J. Vac. Sci. Technol. B
29
,
06F504
(
2011
).
24.
H. H.
Solak
,
C.
Dais
, and
F.
Clube
,
Opt. Express
19
,
10686
(
2011
).
25.
H.
Fukuda
,
N.
Hasegawa
,
T.
Tanaka
, and
T.
Hayashida
,
IEEE Electron Device Lett.
8
,
179
(
1987
).
26.
H.
Fukuda
,
N.
Hasegawa
, and
S.
Okazaki
,
J. Vac. Sci. Technol. B
7
,
667
(
1989
).
27.
T.
Sato
,
Appl. Phys. Express
5
,
092501
(
2012
).
28.
C. P.
Fucetola
,
A. A.
Patel
,
E. E.
Moon
,
T. B.
O'Reilly
, and
H. I.
Smith
,
J. Vac. Sci. Technol. B
27
,
2947
(
2009
).
29.
M.
Mansuripur
,
Classical Optics and its Applications
(
Cambridge University Press
,
Cambridge
,
2002
).
30.
T.
Hayasaka
,
S.
Ishihara
,
H.
Kinoshita
, and
N.
Takeuchi
,
J. Vac. Sci. Technol. B
3
,
1581
(
1985
).
You do not currently have access to this content.