Vacuum electronics (VE) have dominated development and industrial growth in their application areas from the end of the 19th century to the end of 20th century. VE have contributed to basic concepts of physics and have enabled important basic inventions. Despite this bright past, in the meantime also a complete or partial replacement by new technologies such as solid-state electronics (SSE) occurred in several applications areas, triggered by the demand for new features and leading to new applications. Based on a review of the historical development of vacuum electronics from the basic inventions to the modern state of the art, the aim of this paper is to identify future trends and prospects of this field. The appearance of generic technology cycles, as in the case of radio-receiving tubes and cathode-ray display tubes, is discussed. Microwave tubes did experience only a partial replacement by solid-state devices and defended the high-power, high-frequency domain. The reason for their superiority in this domain is discussed. The development of the base technologies for VE, namely vacuum technology and electron source technology, is outlined, enabling further improvements. Besides the high-power, high-frequency domain of microwave tubes, VE technology applications with positive future prospects are addressed, e.g., space applications (long-lived microwave tubes, ion thrusters); thermionic energy converters; e-beam lithography; x-ray tubes; vacuum-based high-resolution characterization, and high-brightness beams for free electron lasers or particle accelerators. The continuous growth and increase in performance of solid-state electronics is shortly reviewed, SSE taking the lead with respect to total sales in the 1980s. Now, despite inherent advantages, solid-state electronics also seem to approach technical limitations. These include increasing energy consumption in conjunction with reduced long-term reliability when further scaling down. It is envisioned that vacuum nanoelectronics can help to overcome these limitations when scaling down feature sizes of integrated circuits below 22 nm.

1.
Vacuum Electronics: Components and Devices
, edited by
J.
Eichmeier
and
M.
Thumm
(
Springer
,
Berlin
,
2008
).
2.
V.
Granatstein
,
R.
Parker
, and
C.
Armstrong
,
Proc. IEEE
87
,
702
(
1999
).
3.
R. H.
Abrams
,
B.
Levush
,
A. A.
Mondelli
, and
R. K.
Parker
,
IEEE Microw. Mag.
2
,
61
(
2001
).
4.
R. K.
Parker
,
R. H.
Abrams
,
B. G.
Danly
, and
B.
Levush
,
IEEE Trans. Microwave Theory Tech.
50
,
835
(
2002
).
5.
Modern Microwave and Millimeter-Wave Power Electronics
, edited by
R. J.
Barker
,
J. H.
Booske
,
N. C.
Luhmann
, and
G. S.
Nusinovich
(
Wiley-IEEE
,
New York
,
2005
).
6.
J. H.
Booske
,
Phys. Plasmas
15
,
055502
(
2008
).
7.
H. J.
Schmitt
, in
Proceedings of 2004 IEEE Conference on the History of Electronics
(
IEEE GHN
,
Bletchley Park
,
2004
); see: http://www.ieeeghn.org/wiki/index.php/2004_IEEE_Conference_on_the_History_of_Electronics#Conference_Papers
8.
H.
Döring
,
NTG Fachbericht
85
,
7
(
1983
).
9.
Handbuch der Vakuumelektronik
, edited by
J.
Eichmeier
and
H.
Heynisch
(
Oldenbourg
,
München, Wien
,
1989
) (in German).
10.
P. A.
Redhead
,
J. Vac. Sci. Technol. A
16
,
1394
(
1998
).
11.
F. R.
Paturi
,
Chronik der Technik
(
Chronik Verlag
,
Dortmund
,
1988
) (in German).
12.
Geschichte der Technik in Schlaglichtern
, edited by
W.
Conrad
(
Meyers Lexikonverlag
,
Mannheim
,
1997
).
13.
B. H.
Bunch
and
A.
Hellemans
,
The History of Science and Technology
(
Easton
,
Norwalk
,
2004
).
14.
S.
Okamura
,
History of Electron Tubes
(
Ohmsha Ltd.
,
Tokyo
,
1994
).
15.
P. A.
Redhead
,
J. Vac. Sci. Technol. A
23
,
1252
(
2005
).
16.
A.
Wehnelt
,
Ann. Phys.
14
,
425
(
1904
).
17.
J.
Goerth
, in
Proceedings of 2004 IEEE Conference on the History of Electronics
(
IEEE GHN
,
Bletchley Park
,
2004
); see: http://www.ieeeghn.org/wiki/index.php/2004_IEEE_Conference_on_the_History_of_Electronics#Conference_Papers
18.
J. B.
Cassanhiol
, in
Proceedings of Information Display Workshop 1998
(
SID
,
San Jose
,
1998
), p.
7
.
19.
G.
Herrmann
and
S.
Wagener
,
The Oxide Coated Cathode
(
Chapman & Hall
,
London
,
1951
).
20.
R.
Umstattd
, in
Modern Microwave and Millimeter-Wave Power Electronics
(
IEEE Wiley
,
New York
,
2005
), p.
393
.
21.
R.
Dekker
,
The EF50, The Tube That Helped to Win the War
(
2003
); see: www.dos4ever.com/EF50
22.
G.
Alma
and
F.
Prakke
,
Philips Tech. Rev.
8
,
289
(
1946
).
23.
J. A.
Castellano
, in
Digest of Society for Information Display (SID) Symposium 1999
(
SID
,
San Jose
,
1999
), p.
356
.
24.
25.
K.
Blankenbach
,
G.
Gassler
, and
H. W. P.
Koops
, in
Vacuum Electronics
(
Springer
,
Berlin
,
2008
), p.
85
.
26.
K.
Teer
,
Philips Tech. Rev.
42
,
297
(
1986
).
27.
J. A.
Castellano
,
Handbook of Display Technology
(
Academic
,
London
,
1992
).
28.
G.
Faillon
,
G.
Kornfeld
,
E.
Bosch
, and
M.
Thumm
, in
Vacuum Electronics
(
Springer
,
Berlin
,
2008
), p.
1
.
29.
M.
Thumm
 et al.,
IEEE Trans. Plasma Sci.
38
,
1141
(
2010
).
30.
Industrial Assessment of the Microwave Power Industry
, edited by
M.
Meth
(
Department of Defense
,
Washington
,
1997
); see: http://www.triodeel.com/images/tubeassessment.pdf
31.
J. A. M.
Hofman
,
Med. Mundi
54
,
5
(
2010
).
32.
G.
Gaertner
and
H. W. P.
Koops
, in
Vacuum Electronics
(
Springer
,
Berlin
,
2008
), p.
429
.
33.
L. D.
Hall
,
Science
128
,
3319
(
1958
).
34.
H.
Ishimaru
,
J. Vac. Sci. Technol. A
7
,
2439
(
1989
).
35.
A.
Calcatelli
, in
Proceedings of TC16-Event- Pressure and Vacuum Measurement, Merida 2007
[
International Measurement Confederation (IMEKO) and Elsevier
,
London
,
2007
], p.
34
; see: http://www.imeko.org/publications/tc16-2007/IMEKO-TC16-2007-KL-034u.pdf
36.
K.
Wey
and
R. J.
Peters
,
Vak. Forsch. Prax.
14
,
183
(
2002
).
38.
G. A.
Haas
and
R. E.
Thomas
,
IEEE Trans. Electron Devices
37
,
850
(
1990
).
39.
S.
Yamamoto
,
Rep. Prog. Phys.
69
,
181
(
2006
).
40.
G.
Gaertner
and
P. A. M.
van der Heide
, in
Technical Digest of Information Display Workshop 2000
(
SID
,
Kobe
,
2000
), p.
513
.
41.
J.
Wang
,
W.
Liu
,
Y.
Wang
, and
M.
Zhou
, in
Abstract Book of 2008 International Vacuum Electron Sources Conference (IVESC)
(
Queen Mary
,
University of London, London
,
2008
), p.
10
.
42.
Y.
Wang
,
J.
Wang
,
W.
Liu
, and
J.
Li
, in
Abstract Book of 2008 International Vacuum Electron Sources Conference (IVESC)
(
Queen Mary
,
University of London, London
,
2008
), p.
16
.
43.
G. E.
Moore
,
Electronics
38
,
114
(
1965
).
44.
G.
van Gorkom
and
A.
Hoeberechts
, in
Vacuum Microelectronics 1989
, IOP Conference Series 99 (
Institute of Physics
,
Bristol
,
1989
), p.
41
.
45.
I.
Brodie
and
C. A.
Spindt
,
Appl. Surf. Sci.
2
,
149
(
1979
).
46.
C. A.
Spindt
 et al., in
Conference Record of 1994 TRI-Service/NASA Cathode Workshop
(
Palisades Institute
,
Cleveland
,
1994
), p.
87
.
47.
C. A.
Spindt
,
C. E.
Holland
,
A.
Rosengreen
, and
I.
Brodie
,
J. Vac. Sci. Technol. B
11
,
468
(
1993
).
48.
C. A.
Spindt
,
C. E.
Holland
,
P. R.
Schwoebel
,
I.
Brodie
,
J. Vac. Sci. Technol. B
14
,
1986
(
1996
).
49.
C. A.
Spindt
,
C. E.
Holland
,
P. R.
Schwoebel
,
I.
Brodie
,
J. Vac. Sci. Technol. B
16
,
758
(
1998
).
50.
P. R.
Schwoebel
,
C. A.
Spindt
, and
C. E.
Holland
,
J. Vac. Sci. Technol. B
19
,
582
(
2001
);
C. A.
Spindt
 et al.,
J. Vac. Sci. Technol. B
19
,
980
(
2001
).
51.
P. R.
Schwoebel
,
C. A.
Spindt
, and
C. E.
Holland
,
J. Vac. Sci. Technol. B
21
,
433
(
2003
).
52.
P. R.
Schwoebel
,
C. A.
Spindt
, and
C. E.
Holland
,
J. Vac. Sci. Technol. B
23
,
691
(
2005
).
53.
Z.
Chen
,
Q.
Zhang
,
B.
Zhu
,
D.
den Engelsen
,
P. K.
Bachmann
, and
A.
Lewalter
,
J. Soc. Inf. Disp.
16
,
645
(
2008
).
54.
Z.
Chen
,
G.
Cao
,
Z.
Lin
, and
D.
den Engelsen
,
J. Vac. Sci. Technol. B
24
,
1017
(
2006
).
55.
R.
Ganter
 et al.,
Phys. Rev. Lett.
100
,
064801
(
2008
).
56.
G. N.
Fursey
,
Appl. Surf. Sci.
215
,
113
(
2003
).
57.
R. G.
Forbes
,
Appl. Phys. Lett.
89
,
113122
(
2006
).
58.
Y. M.
Shin
,
J. K.
So
,
K. H.
Jang
,
J. H.
Won
,
A.
Srivastava
, and
G. S.
Park
,
Appl. Phys. Lett.
90
,
031502
(
2007
).
59.
Y.
Cheng
and
O.
Zhou
,
C. R. Phys.
4
,
1021
(
2003
).
60.
G. N.
Hatsopoulos
and
G. P.
Gyftopoulos
,
Thermionic Energy Conversion
(
The MIT Press
,
Cambridge
,
1973
).
61.
P. G.
Tanner
,
D. A.
Fraser
, and
A. D.
Irving
,
IEE Proc.: Sci., Meas. Technol.
152
,
1
(
2005
).
62.
H.
Bassner
,
R.
Killinger
,
J.
Mitterauer
,
F.
Rüdenauer
,
N.
Koch
, and
G.
Kornfeld
, in
Vacuum Electronics
(
Springer
,
Berlin
,
2008
), p.
265
.
63.
D. H.
Lehman
 et al., JPL document 982-R120461, based on Prometheus Project Final Report, October 1, 2005 (IEEE, New York,
2006
); see: http://www.jpl.nasa.gov/jimo/ and http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/38573/1/05-3366.pdf
64.
J.
Mueller
, “
Micropropulsion for small spacecraft
,” in
AIAA Progress in Astronautics and Aeronautics
, edited by
M. M.
Micci
and
A. D.
Ketsdever
(
AIAA
,
Reston
,
2000
), Vol.
187
, p.
45
.
65.
European Organization for Nuclear Research (CERN), Communication Group, CERN-LHC The Guide-FAQ, CERN-Brochure-2009-003-Eng (CERN, Geneva,
2009
); see: http://cdsweb.cern.ch/record/1165534/files/CERN-Brochure-2009-003-Eng.pdf and http://public.web.cern.ch/public/en/LHC/Facts-en.html
66.
D. H.
Dowell
 et al.,
Nucl. Instrum. Methods Phys. Res. A
622
,
685
(
2010
).
67.
M. C.
Jones
,
V. B.
Neculaes
,
R. M.
Gilgenbach
,
W. M.
White
,
M. R.
Lopez
,
Y. Y.
Lau
,
T.
A.
Spencer
, and
D.
Price
,
Rev. Sci. Instrum.
75
,
2976
(
2004
).
68.
M.
Seidel
and
K.
Zapfe
, in
Vacuum Electronics
(
Springer
,
Berlin
,
2008
), p.
355
.
69.
H.
Bluhm
 et al., in
Vacuum Electronics
(
Springer
,
Berlin
,
2008
), p.
156
.
70.
Y.
Zhang
and
P.
Kruit
,
J. Vac. Sci. Technol. B
25
,
2239
(
2007
);
P.
Kruit
 et al.,
J. Vac. Sci. Technol. B
25
,
2245
(
2007
).
71.
P. C.
Post
,
A.
Mohammadi-Gheidari
,
C. W.
Hagen
, and
P.
Kruit
,
J. Vac. Sci. Technol. B
29
,
06F310
(
2011
).
72.
G.
Borsuk
and
T.
Coffey
,
Def. Horizons
30
,
1
(
2003
).
73.
Royal Swedish Academy of Sciences, Advanced Information on the Nobel Prize in Physics,
2000
, see: http://nobelprize.org/nobel_prizes/physics/laureates/2000/phyadv.pdf
74.
P.
Gelsinger
,
IEEE SSCS Newsletter
9
,
18
(
2006
).
75.
T. R.
Halfhill
,
IEEE SSCS Newsletter
9
,
21
(
2006
).
76.
R. W.
Keyes
,
IEEE SSCS Newsletter
9
,
25
(
2006
).
77.
Intel Corp., Technical Information,
2011
, see: http://www.intel.com/technology/mooreslaw/
78.
R.
Goodwins
, “Will Intel smash the silicon barrier?,” in ZDNet UK News and Analysis, 1/3/2005; see: http://news.zdnet.co.uk/hardware/will-intel-smash-the-silicon-barrier-39189738/
79.
K. J.
Yang
,
T.-J.
King
,
C.
Hu
,
S.
Levy
, and
H. N.
Al-Shareef
,
Solid-State Electron.
47
,
149
(
2003
).
80.
Intel Corp., Technical Information,
2011
, see: http://www.intel.com/technology/silicon/high-k.htm
81.
P.
Ho
and
T.
Kwok
,
Rep. Prog. Phys.
52
,
301
(
1989
).
82.
F.
d’Heurle
and
P.
Ho
, in
Thin Films; Interdiffusion and Reactions
(
Wiley
,
New York
,
1978
), p.
243
.
83.
K.
Ikeda
,
W.
Ohue
,
K.
Endo
,
Y.
Gotoh
, and
H.
Tsuji
,
J. Vac. Sci. Technol. B
29
,
02B116
(
2011
).
84.
M. E.
Itkis
,
F.
Borondics
,
A.
Yu
, and
R. C.
Haddon
,
Science
312
,
413
(
2006
).
85.
S.
Tans
,
A.
Verschueren
, and
C.
Dekker
,
Nature
393
,
49
(
1998
).
86.
Z.
Chen
,
G.
Cao
,
Z.
Lin
,
I.
Koehler
, and
P. K.
Bachmann
,
Nanotechnology
17
,
1062
(
2006
).
88.
Z.
Abrams
,
Z.
Ioffe
,
A.
Tsukernik
,
O.
Cheshnovsky
, and
Y.
Hanein
,
Nano Lett.
7
,
2666
(
2007
).
89.
P.
Rothemund
 et al.,
Nat. Nanotech.
4
,
557
(
2009
).
90.
F.
Xia
,
M.
Steiner
,
Y.
Lin
, and
P.
Avouris
,
Nat. Nanotech.
3
,
609
(
2008
).
91.
S. S.
Li
,
G. L.
Long
,
F. S.
Bai
,
S. L.
Feng
, and
H. Z.
Zheng
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
11847
(
2001
).
92.
G.
Gaertner
and
D.
den Engelsen
,
Appl. Surf. Sci.
251
,
24
(
2005
).
94.
B.
Kram
,
Dotmed Business News
1–2009
,
33
(
2009
), and former issues.
95.
M.
Kanellos
, “Intel: Heat critical issue in chip design,” in ZDNet UK News and Analysis, 2 May 2001.
96.
S.
Borkar
and
A. A.
Chien
,
Communications ACM
54
,
67
(
2011
).
97.
S. E.
Thompson
and
S.
Parthasarathy
,
Materialstoday
9
,
20
(
2006
).
98.
K.
Azar
,
Electronics Cooling Magazine
, January 2000, p. 1, see: http://www.electronics-cooling.com/2000/01/the-history-of-power-dissipation/.
You do not currently have access to this content.