Conformally coating vertically aligned carbon nanotubes (v-CNT) with metals or oxides can be difficult because standard line-of-sight deposition methods, such as dc sputter coating and electron-beam evaporation, are hindered by the low mean-free-path within the vertically aligned array. In this work, we present a facile method to conformally coat dense arrays of v-CNTs using thermal decomposition of iron pentacarbonyl at 205 °C and 30 mTorr. The resulting coatings were found to be uniform from top-to-bottom across an entire 1 × 1 cm2 array of v-CNTs. The thickness of the deposited coating was found to be 2–3 nm/cycle and the resulting film thickness were found to be 13 ± 3 nm after five cycles and 55 ± 5 nm after 20 cycles. This process demonstrates that metal organic chemical vapor deposition can be used to fabricate conformal coatings on v-CNTs.

1.
K. H.
An
,
W. S.
Kim
,
Y. S.
Park
,
Y. C.
Choi
,
S. M.
Lee
,
D. C.
Chung
,
D. J.
Bae
,
S. C.
Lim
, and
Y. H.
Lee
,
Adv. Mater.
13
,
497
(
2001
).
2.
R. H.
Baughman
,
A. A.
Zakhidov
, and
W. A.
de Heer
,
Science
297
,
787
(
2002
).
3.
J.
Bonard
,
J. P.
Salvetat
,
T.
Stockli
,
L.
Forro
, and
A.
Chatelain
,
Appl. Phys. A
69
,
245
(
1999
).
4.
J. M.
Bonard
,
F.
Maier
,
T.
Stockli
,
A.
Chatelain
, and
W. A.
de Heer
,
Ultramicroscopy
73
,
7
(
1998
).
5.
W. A. d.
Heer
,
A.
Châtelain
, and
D.
Ugarte
,
Science
270
,
1179
(
1995
).
6.
B. A.
Cola
,
J.
Xu
,
C.
Cheng
,
X.
Xu
,
T. S.
Fisher
, and
H.
Hu
,
J. Appl. Phys.
101
,
054313
(
2007
).
7.
S.
Kawasaki
 et al,
Appl. Phys. Lett.
92
,
1
(
2008
).
8.
A.
Javey
 et al,
Nat. Mater.
1
,
241
(
2002
).
9.
G.
Zhan
,
X.
Du
,
D. M.
King
,
L. F.
Hakim
,
X.
Liang
,
J. A.
McCormick
, and
A. W.
Weimer
,
J. Am. Ceram. Soc.
91
,
831
(
2008
).
10.
Z.
Liu
and
B.
Han
,
Adv. Mater.
21
,
825
(
2009
).
11.
L.
Fu
,
Z. M.
Liu
,
Y. Q.
Liu
,
B. X.
Han
,
J. Q.
Wang
,
P. A.
Hu
,
L. C.
Cao
, and
D. B.
Zhu
,
Adv. Mater.
16
,
350
(
2004
).
12.
Z.
Sun
,
Z.
Liu
,
B.
Han
,
Y.
Wang
,
J.
Du
,
Z.
Xie
, and
G.
Han
,
Adv. Mater.
17
,
928
(
2005
).
13.
J. F.
Roeder
,
T. H.
Baum
,
S. M.
Bilodeau
,
G. T.
Stauf
,
C.
Ragaglia
,
M. W.
Russell
, and
P. C.
Van Buskirk
,
Adv. Mater. Opt. Electron.
10
,
145
(
2000
).
14.
A. K.
Viswanath
,
K.
Hiruma
,
M.
Yazawa
,
K.
Ogawa
, and
T.
Katsuyama
,
Microw. Opt. Technol. Lett.
7
,
94
(
1994
).
15.
H. W.
Kim
and
N. H.
Kim
,
Mater. Sci. Forum
475–479
,
3377
(
2005
).
16.
D. A.
Lamb
and
S. J. C.
Irvine
,
J. Cryst. Growth
273
,
111
(
2004
).
17.
G.
Perillat-Merceroz
,
P. H.
Jouneau
,
G.
Feuillet
,
R.
Thierry
,
M.
Rosina
, and
P.
Ferret
,
J. Phys. Conf. Ser.
209
,
012034
(
2010
).
18.
T. D.
Germann
,
A.
Strittmatter
,
T.
Kettler
,
K.
Posilovic
,
U. W.
Pohl
, and
D.
Bimberg
,
J. Cryst. Growth
298
,
591
(
2007
).
19.
H. G.
Kim
,
T. V.
Cuong
,
M. G.
Na
,
H. K.
Kim
,
H. Y.
Kim
,
J. H.
Ryu
, and
C.-H.
Hong
,
IEEE Photonic Tech. Lett.
20
,
1284
(
2008
).
20.
Z.
Liu
,
D.
Wasserman
,
S. S.
Howard
,
A. J.
Hoffman
,
C. F.
Gmachl
,
X.
Wang
,
T.
Tanbun-Ek
,
L.
Cheng
, and
F.-S.
Choa
,
IEEE Photonic Tech. Lett.
18
,
1347
(
2006
).
21.
S.
Kolluri
,
Y.
Pei
,
S.
Keller
,
S. P.
Denbaars
, and
U. K.
Mishra
,
IEEE Electron Device Lett.
30
,
584
(
2009
).
22.
F.
Tan
,
X.
Fan
,
G.
Zhang
, and
F.
Zhang
,
Mater. Lett.
61
,
1805
(
2007
).
23.
A. M.
Obedkova
,
B. S.
Kaverina
,
S. A.
Gusevb
,
A. B.
Ezerskiic
,
N. M.
Semenova
,
A. A.
Zaytseva
,
V. A.
Egorova
, and
G. A.
Domracheva
,
J. Surf. Invest.-X-Ray
3
,
554
(
2009
).
24.
J.
Dewar
and
H. O.
Jones
,
Proc. R. Soc. London, Ser. A
76
,
558
(
1905
).
25.
W.
Lin
,
K.
Moon
,
S.
Zhang
,
Y.
Ding
,
J.
Shang
,
M.
Chen
, and
C.
Wong
,
ACS Nano
4
,
1716
(
2010
).
26.
P.
Mills
and
J. L.
Sullivan
,
J. Phys. D
16
,
723
(
1983
).
You do not currently have access to this content.