An atomic force microscope (AFM) system with multiple parallel lithography probes of equal heights on a single cantilever was created in order to improve the throughput of AFM lithography. The multitip probe was fabricated by electron-beam (e-beam) lithography and a dry silicon etching process. Several carbon islands were made on a single cantilever in a straight line by e-beam lithography and were used as an etch mask, whereas the silicon pedestal structure of the multitip probe was fabricated by reactive ion etching (RIE). Finally the carbon islands were sharpened by a RIE process using oxygen gas. The multitip probe was successfully applied to form multidot pattern arrays on a negative resist film coated on silicon by low electric field induced AFM lithography. A pedestal nanopillar structure was utilized as a convenient support feature that enabled better control of multiple nanotip arrays for AFM writing. The authors fabricated such a nanopedestal array with extremely sharp nanoneedle tips.

1.
R.
Garcia
,
R.
Martinez
, and
J.
Martinez
,
Chem. Soc. Rev.
35
,
29
(
2006
).
2.
S.
Hong
,
J.
Zhu
, and
C. A.
Mirkin
,
Science
286
,
523
(
1999
).
3.
G.
Liu
,
S.
Xu
, and
Y.
Qian
,
Acc. Chem. Res.
33
,
457
(
2000
).
4.
S.
Kramer
,
R. R.
Fuierer
, and
C. B.
Gorman
,
Chem. Rev.
103
,
4367
(
2003
).
5.
D.
Pires
,
J. L.
Hedrick
,
A. D.
Silva
,
J.
Frommer
,
B.
Gotsmann
,
H.
Wolf
,
M.
Despont
,
U.
Duerig
, and
A. W.
Knoll
,
Science
328
,
732
(
2010
).
6.
R. W.
Li
,
T.
Kanki
, and
H. A.
Tohyama
,
J. Appl. Phys.
95
,
7091
(
2004
).
7.
M.
Hirooka
,
H.
Tanaka
,
R.
Li
, and
T.
Kawaia
,
Appl. Phys. Lett.
85
,
1811
(
2004
).
8.
R. W.
Li
,
T.
Kanki
,
H. A.
Tohyama
,
M.
Hirooka
,
H.
Tanaka
, and
T.
Kawai
,
Nanotechnology
16
,
28
(
2005
).
9.
R. H.
Kim
,
W. S.
Ahn
,
S. H.
Han
, and
S. K.
Choi
,
Appl. Phys. Lett.
90
,
172907
(
2007
).
10.
R. W.
Li
,
T.
Kanki
,
M.
Hirooka
,
A.
Takagi
,
T.
Matsumoto
,
H.
Tanaka
, and
T.
Kawai
,
Appl. Phys. Lett.
84
,
2670
(
2004
).
11.
L.
Pellegrino
,
E.
Bellingeri
,
A. S.
Siri
, and
D.
Marré
,
Appl. Phys. Lett.
87
,
064102
(
2005
).
12.
K. F.
Braun
and
K. H.
Rieder
,
Phys. Rev. Lett.
88
,
096801
(
2002
).
13.
G.
Kwun
,
E.
Jang
,
G.
Kwon
, and
H.
Lee
,
Curr. Appl. Phys.
9
,
S121
(
2009
).
14.
W.
Lee
,
H.
Lee
, and
M.
Chun
,
Langmuir
21
,
8839
(
2005
).
15.
E.
Jang
,
G.
Kwun
,
W.
Choi
, and
H.
Lee
,
Colloids Surf., A
382
,
313
(
2008
).
16.
G.
Kwon
,
S.
Kim
,
M.
Jeong
,
S.
Han
,
C.
Choi
,
S.
Han
,
J.
Hong
, and
H.
Lee
,
Ultramicroscopy
109
,
1052
(
2009
).
17.
D.
Croft
,
G.
Shed
, and
S.
Devasia
,
J. Dyn. Syst. Meas. Control
123
,
35
(
2001
).
18.
L. M.
Picco
,
L.
Bozec
,
A.
Ulcinas
,
D. J.
Engledew
,
M.
Antognozzi
,
M. A.
Horton
, and
M. J.
Miles
,
Nanotechnology
18
,
044030
(
2007
).
19.
S. C.
Minne
,
J. D.
Adams
,
G.
Yaralioglu
,
S. R.
Manalis
,
A.
Atalar
, and
C. F.
Quate
,
Appl. Phys. Lett.
73
,
1742
(
1998
).
20.
K.
Salaita
,
Y.
Wang
,
R. A.
Vega
, and
C. A.
Mirkin
,
Nature Nanotechnol.
2
,
145
(
2007
).
21.
H.
Pozidis
,
W.
Haberle
,
D.
Wiesmann
,
U.
Drechsler
,
M.
Despont
,
T. R.
Albrecht
, and
E.
Eleftheriou
,
IEEE Trans. Magn.
40
,
2531
(
2004
).
22.
X.
Wang
and
C.
Liu
,
Nano Lett.
5
,
1877
(
2005
).
23.
J. A.
Dagata
,
Science
270
,
1625
(
1995
).
24.
C.
Martin
,
G.
Rius
,
X.
Borrise
, and
F.
Perez-Murano
,
Nanotechnology
16
,
1016
(
2005
).
25.
N. S.
Losiilla
,
J.
Martinez
, and
R.
Garcia
,
Nanotechnology
20
,
475304
(
2009
).
You do not currently have access to this content.