Ultraviolet (UV) nanoimprint lithography is used to fabricate nanostructured devices with high-throughput, low cost, and high resolution. The nanoimprint mold is coated with an antisticking layer to enable easy separation of the mold from the UV nanoimprint resins. An important issue is finding a way to prevent the deterioration of the antisticking layer which results from repeated UV nanoimprinting. To do this, a UV nanoimprint resin with release properties is required. The authors evaluated the effect of a fluorine additive on a cationic UV-curable resin by x-ray photoelectron spectroscopy (XPS), scanning probe microscopy, and contact angle measurement. The authors confirmed from the XPS results that fluorine was present on the surface of the cured UV-curable resin with the fluorine additive. Furthermore, the adhesion and frictional forces of the UV-curable resin with the fluorine additive were lower than those of the UV-curable resin without the additive.

1.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Renstrom
,
Appl. Phys. Lett.
67
,
3114
(
1995
).
2.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Renstrom
,
Science
272
,
85
(
1996
).
3.
S. Y.
Chou
,
P. R.
Krauss
,
W.
Zhang
,
L.
Guo
, and
L.
Zhuang
,
J. Vac. Sci. Technol. B
15
,
2897
(
1997
).
4.
J.
Haisma
,
M.
Verheijen
, and
K.
Heuvel
,
J. Vac. Sci. Technol. B
14
,
4124
(
1996
).
5.
T.
Bailey
,
B. J.
Choi
,
M.
Colburn
,
M.
Meissi
,
S.
Shaya
,
J. G.
Ekerdt
,
S. V.
Sreenivasan
, and
C. G.
Willson
,
J. Vac. Sci. Technol. B
18
,
3572
(
2000
).
6.
M.
Komuro
,
J.
Taniguchi
,
S.
Inoue
,
N.
Kimura
,
Y.
Tokano
,
H.
Hiroshima
, and
S.
Matsui
,
Jpn. J. Appl. Phys.
39
,
7075
(
2000
).
7.
Y.
Tada
,
H.
Yoshida
, and
A.
Miyauchi
,
J. Photopolym. Sci. Technol.
20
,
545
(
2007
).
8.
M.
Okada
,
M.
Iwasa
,
K.
Nakamatsu
,
K.
Kanda
,
Y.
Haruyama
, and
S.
Matsui
,
Microelectron. Eng.
86
,
673
(
2009
).
9.
M.
Okada
,
K.
Nakamatsu
,
M.
Iwasa
,
K.
Kanda
,
Y.
Haruyama
, and
S.
Matsui
,
Appl. Phys. Express
2
,
016502
(
2009
).
10.
K.
Tsunozaki
and
Y.
Kawaguchi
,
Microelectron. Eng.
86
,
694
(
2009
).
11.
M.
Vogler
,
H.
Atasoy
,
C.
Spreu
,
H.
Schift
,
M.
Zelsmann
,
F.
Schlachter
,
F.
Reuther
, and
G.
Grützner
,
8th International Conference on Nanoimprint and Nanoprint Technology (NNT’09)
,
San Jose, CA
, November 11–13,
2009
.
12.
K.
Wu
,
X.
Wang
,
E. K.
Kim
,
C. G.
Willson
, and
J. G.
Ekerdt
,
Langmuir
23
,
1166
(
2007
).
13.
M.
Zelsmann
,
C.
Alleaume
,
D.
Truffier-Boutry
,
A.
Francone
,
A.
Beaurain
,
B.
Pelissier
, and
J.
Boussey
,
Microelectron. Eng.
87
,
1029
(
2010
).
14.
N.
Yamada
,
K.
Nakamatsu
,
K.
Kanda
,
Y.
Haruyama
, and
S.
Matsui
,
Jpn. J. Appl. Phys.
46
,
6373
(
2007
).
15.
D.
Truffier-Boutry
,
R.
Galand
,
A.
Beaurain
,
A.
Francone
,
B.
Pelissier
,
M.
Zelsmann
, and
J.
Boussey
,
Microelectron. Eng.
86
,
669
(
2009
).
16.
H. A.
Mizes
,
K.-G.
Loh
,
R. J. D.
Miller
,
S. K.
Ahuja
, and
E. F.
Grabowski
,
Appl. Phys. Lett.
59
,
2901
(
1991
).
17.
G. M.
Pharr
,
W. C.
Oliver
, and
F. R.
Brotzen
,
Mater. Res.
7
,
613
(
1992
).
18.
C. M.
Mate
,
G. M.
McClelland
,
R.
Erlandsson
, and
S.
Chiang
,
Phys. Rev. Lett.
59
,
1942
(
1987
).
19.
R.
Erlandsson
,
G.
Hadziioannou
,
C. M.
Mate
,
G. M.
McClelland
, and
S.
Chiang
,
J. Chem. Phys.
89
,
5190
(
1988
).
20.
S. I.
Bulychev
,
V. P.
Alekhin
,
M.
Kh. Shorshorov
, and
A. P.
Ternovskii
,
Strength Mater.
8
,
1084
(
1976
).
You do not currently have access to this content.