In this work, we have investigated the fabrication of ordered silicon nitride nanohole arrays as part of an overall process aimed at producing organized silicon nanocrystals. The authors have demonstrated that it is possible to use inductively coupled plasma etching systems in order to etch nanometric layers, despite the fact that these systems are designed for deep and fast etching. A stable process is developed for shallow etching of silicon nitride nanoholes. The influence of different plasma etching parameters on silicon nitride nanohole properties is analyzed. 30 nm deep nanoholes of approximately 30 nm diameter, near vertical sidewalls and a good control of the selectivity are achieved. The overall process provides a simple and reproducible approach based on shallow inductively coupled plasma etching to obtain high quality nanosized silicon nitride templates. A suitable process for organized arrays of 10 nm diameter silicon nanocrystals realized by electrochemical etching is shown.

1.
A.
Nakajima
,
T.
Futatsugi
,
K.
Kosemura
,
T.
Fukano
, and
N.
Yokoyama
,
Appl. Phys. Lett.
70
,
1742
(
1997
).
2.
S.
Tiwari
,
F.
Rhana
,
H.
Hanafi
,
A.
Harstein
,
E. F.
Crabbe
, and
K.
Chan
,
Appl. Phys. Lett.
68
,
1377
(
1996
).
3.
R. F.
Steimle
 et al.,
Microelectron. Reliab.
47
,
585
(
2007
).
4.
L.
Perniola
,
B. D
Salvo
,
G.
Ghibaudo
,
A. F.
Para
,
G.
Pananakakis
,
T.
Baron
, and
S.
Lombardo
,
Solid State Electron.
47
,
1637
(
2003
).
5.
P.
Kitslaar
,
M.
Strassner
,
I.
Sagnes
,
E.
Bourhis
,
X.
Lafosse
,
C.
Ulysse
,
C.
David
,
R.
Jede
,
L.
Bruchhaus
, and
J.
Gierak
,
Microelectron. Eng.
83
,
811
(
2006
).
6.
I.
Berbezier
,
A.
Karmous
,
P. D.
Szkutnik
,
A.
Ronda
,
A.
Sgarlata
,
A.
Balzarotti
,
P.
Castrucci
,
M.
Scarselli
, and
M.
De Crescenzi
,
Mater. Sci. Semicond. Process.
9
,
812
(
2006
).
7.
Z.
Zhong
and
G.
Bauer
,
Appl. Phys. Lett.
84
,
1922
(
2004
).
8.
T.
Baron
,
F.
Mazen
,
C.
Busseret
,
A.
Souifi
,
P.
Mus
,
F.
Fournel
,
M. N.
Séméria
,
H.
Moriceau
,
B.
Aspard
, and
P.
Gentile
,
Microelectron. Eng.
61
,
511
(
2002
).
9.
C.
Bonafos
 et al.,
J. Appl. Phys.
95
,
5696
(
2004
).
10.
T.
Inokuma
,
Y.
Wakayama
,
T.
Muramoto
,
R.
Aoki
,
Y.
Kurata
, and
S.
Hasegawa
J. Appl. Phys.
83
,
2228
(
1998
).
11.
T.
Nychyporuk
,
V.
Lysenko
,
B.
Gautier
, and
D.
Barbier
,
Appl. Phys. Lett.
86
,
213107
(
2005
).
12.
T.
Nychyporuk
,
V.
Lysenko
,
B.
Gautier
, and
D.
Barbier
,
J. Appl. Phys.
100
,
104307
(
2006
).
13.
A.
Karmous
,
I.
Berbezier
, and
A.
Ronda
Phys. Rev. B
73
,
075323
(
2006
).
14.
T.
Wang
,
H. C.
Chen
,
H. W.
Chiu
,
Y. S.
Lin
,
G. W.
Huang
, and
S. S.
Lu
,
IEEE Trans. Microwave Theory Tech.
54
,
580
(
2006
).
15.
T.
Yamada
,
H.
Yoshikawa
,
H.
Uetsuka
,
S.
Kumaragurubaran
,
N.
Tokuda
, and
S. I.
Shikata
,
Diamond Relat. Mater.
16
,
996
(
2007
).
16.
A.
Ayari-Kanoun
,
D.
Drouin
,
J.
Beauvais
,
V.
Lysenko
,
T.
Nychyporuk
, and
A.
Souifi
,
Appl. Phys. Lett.
95
,
153105
(
2009
).
17.
L.
Merhari
,
K. E.
Gonsalves
,
Y.
Hu
,
W.
He
,
W. S.
Huang
,
M.
Angelopoulos
,
W. H.
Bruenger
,
C.
Dzionk
, and
M.
Torkler
,
Microelectron. Eng.
63
,
391
(
2002
).
18.
S.
Bretoiu
,
D.
Di Mola
,
E.
Fioravanti
, and
S.
Visona
,
J. Vac. Sci. Technol. B
20
,
2085
(
2002
).
19.
J. L.
Lindstrom
,
G. S.
Oehrlein
, and
W. A.
Lanford
,
J. Electrochem. Soc.
139
,
317
(
1992
).
20.
R. G.
Frieser
,
J. A.
Bondur
, and
E. F.
Gorey
,
J. Electrochem. Soc.
134
,
419
(
1987
).
21.
Y. H.
Wang
,
R.
Kumar
,
X.
Zhou
,
J. S.
Pan
, and
J. W.
Chai
,
Thin Solid Films
473
,
132
(
2005
).
22.
H.
Yang
,
A.
Jin
,
Q.
Luo
,
C.
Gu
, and
Z.
Cui
,
Microelectron. Eng.
84
,
1109
(
2007
).
23.
S. A.
McAuley
,
H.
Ashraf
,
L.
Atabo
,
A.
Chambers
,
S.
Hall
,
J.
Hopkins
, and
G.
Nicholls
,
J. Phys. D: Appl. Phys.
34
,
2769
(
2001
).
24.
M.
Guilmain
,
A.
Jaouad
,
S.
Ecoffey
, and
D.
Drouin
,
Microelectron. Eng.
88
,
2505
(
2011
).
25.
D. J.
Resnicka
 et al.,
J. Microlithogr. Microfabr., Microsyst.
1
,
284
(
2002
).
You do not currently have access to this content.