The authors utilize a focused ion beam (FIB) to explore various sputtering parameters in order to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modifications of the FIB sputtering parameters affect the periodicity and shape of the corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of the sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for the rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

1.
B. R.
Flachsbart
,
M. A.
Shannon
,
J. V.
Sweedler
, and
P. W.
Bohn
,
Appl. Phys. Lett.
85
,
1241
(
2004
).
2.
K. G.
Wang
,
S. L.
Yue
,
L.
Wang
,
A. Z.
Jin
,
C. Z.
Gu
,
P. Y.
Wang
,
Y. C.
Feng
,
Y. C.
Wang
, and
H. B.
Niu
,
Microfluid. Nanofluid.
2
,
85
(
2006
).
3.
S.
Arscott
and
D.
Troadec
,
Nanotechnology
16
,
2295
(
2005
).
4.
D. A.
Raorane
,
M. D.
Lim
,
F. F.
Chen
,
C. S.
Craik
, and
A.
Majumdar
,
Nano Lett.
8
,
2968
(
2008
).
5.
V.
Lien
and
F.
Vollmer
,
Lab Chip
7
,
1352
(
2007
).
6.
H.
Cho
,
J.
Kang
,
S.
Kwak
,
K.
Hwang
,
J.
Min
,
J.
Lee
,
D.
Yoon
, and
T.
Kim
,
Proceedings of the IEEE Micro Electro Mechanical Systems Workshop
,
30 January-3 February 2005
, (IEEE Express Conference Publishing, Piscataway, NY, 2005), p.
698
.
7.
A.
Ezkerra
,
L. J.
Fernandez
,
K.
Mayora
, and
J. M.
Ruano-Lopez
,
J. Micromech. Microeng.
17
,
2264
(
2007
).
8.
T. L.
King
,
E. N.
Gatimu
, and
P. W.
Bohn
,
Biomicrofluidics
3
,
012004
(
2009
).
9.
T. L.
King
,
R. A.
Lambert
,
S.
Das
,
M. J.
Madou
,
S.
Chakraborty
, and
R. H.
Rangel
,
Int. J. Heat Mass Transfer
51
,
4367
(
2008
).
10.
P.
Ruchhoeft
and
J. C.
Wolfe
,
J. Vac. Sci. Technol. B
19
,
2529
(
2001
).
11.
A.
Imre
,
L. E.
Ocola
,
L.
Rich
, and
J.
Klingfus
,
J. Vac. Sci. Technol. B
28
,
304
(
2010
).
12.
P.
Ruchhoeft
,
M.
Colburn
,
B.
Choi
,
H.
Nounu
,
S.
Johnson
,
T.
Bailey
,
S.
Damle
,
M.
Stewart
,
J.
Ekerdt
, .,
J. Vac. Sci. Technol. B
17
,
2965
(
1999
).
13.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Renstrom
,
J. Vac. Sci. Technnol. B
14
,
4129
(
1996
).
14.
E.
Mele
,
F.
Benedetto
,
L.
Persano
,
D.
Pisignano
, and
R.
Cingolani
,
Nanotechnology
16
,
391
(
2005
).
15.
Y.
Madokoro
,
S.
Tomimatsu
,
Y.
Kawanami
, and
K.
Umemura
,
Microelectron. Eng.
46
,
493
(
1999
).
16.
L. V.
Saraf
,
J. Micromech. Microeng.
20
,
045031
(
2010
).
17.
L. V.
Saraf
,
Nucl. Instrum. Methods Phys. Res. B
269
,
1540
(
2011
).
18.
Y.
Huang
,
D. J. H.
Cockayne
,
C.
Marsh
,
J. M.
Titchmarsh
and
A. K.
Petford-Long
,
Appl. Surf. Sci.
252
,
1954
(
2005
).
19.
S.
Rubanov
and
P. R.
Munroe
,
J. Microsc.
214
,
213
(
2004
).
20.
J. H.
Fabian
,
L.
Scandella
,
H.
Fuhrmann
,
R.
Berger
,
T.
Mezzacasa
,
C.
Musil
,
J.
Gobrecht
, and
E.
Meyer
,
Ultramicroscopy
82
,
69
(
2000
).
21.
J. E.
Sader
,
T. P.
Burg
, and
S. R.
Manalis
,
J. Fluid Mech.
650
,
215
(
2010
).
22.
T. P.
Burg
,
M.
Godin
,
S. M.
Knudsen
,
W.
Shen
,
G.
Carlson
,
J. S.
Foster
,
K.
Babcock
, and
S. R.
Manalis
,
Nature
446
,
1066
(
2007
).
You do not currently have access to this content.