We present a two-axis micro-mirror scanner with compact slanted comb-drive actuator. The slanted comb-drive actuator is analyzed by comparing with a rectangular comb-drive actuator. The angle magnification factor of slanted comb-drive actuator is 1.6 times larger than that of rectangular comb-drive actuator. The slanted comb-drive actuator is designed for operations in both static and dynamic modes. The proposed scanner is realized from silicon-on-insulator (SOI) wafer. Electronic isolation between movable comb electrodes in device layer and fixed comb electrodes in handle layer are performed using isolation trenches, buried oxide layer, and silicon V-shaped conductive hinges. Movable and fixed parts are physically connected via buried oxide layer and silicon frame fabricated from the handle layer of SOI wafer using time-controlled etching process. The resonant frequencies of horizontal and vertical axes are 25.88 kHz and 592 Hz, respectively. The rotation angles are 0.7° and 5.8° at 80V dc voltage in the static mode for inner mirror and gimbal frame, respectively, and 21° and 24° using the differential ac driving method with 80Vbias+70Vac and 25Vbias+12.5Vac voltages.

1.
M.- H.
Kiang
,
O.
Solgaard
,
R. S.
Muller
, and
K. Y.
Lau
,
IEEE Photon. Technol. Lett.
8
,
1707
(
1996
).
2.
L.
Zhou
,
M.
Last
,
V.
Milanovi
,
J. M.
Kahn
, and
K. S. J.
Pister
,
Proc. IEEE/LEOS Optical MEMS
157
,
2003
.
3.
C. H.
Hart
,
M.
Choi
,
S. C.
Kim
,
S. H.
Lee
,
S. H.
Kim
,
Y.
Yee
, and
J. U.
Bu
,
J. Microelectromech. Syst.
9
,
409
(
2000
).
4.
H.
Schenk
,
P.
Dürr
,
T.
Haase
,
D.
Kunze
,
U.
Sobe
,
H.
Lakner
, and
H.
Kück
,
IEEE J. Sel. Top. Quantum Electron.
6
,
715
(
2000
).
5.
A. K.
Pandey
and
R.
Pratap
,
J. Micromech. Microeng.
18
,
105003
(
2008
).
6.
D.
Hah
,
C. A.
Choi
,
C. K.
Kim
, and
C. H.
Jun
,
J. Micromech. Microeng.
14
,
1148
(
2004
).
7.
Y. C.
Ko
,
J. W.
Cho
,
Y. K.
Mun
,
H. G.
Jeong
,
W. K.
Choi
,
J. W.
Kim
,
Y. H.
Park
,
J. B.
Yoo
, and
J. H.
Lee
,
Sens. Actuators, A
126
,
218
(
2006
).
8.
M.
Wu
,
H. Y.
Lin
, and
W.
Fang
,
IEEE Photon. Technol. Lett.
19
,
1586
(
2007
).
9.
S. G.
Adams
,
K. A.
Shaw
,
R. Y.
Webb
,
B. W.
Reed
,
N. C.
MacDonald
, and
T. J.
Davis
, U.S. Patent No. US 6,342,430 B1 (29 January
2002
).
10.
M.
Esashi
and
N.
Kikuchi
, U.S. Patent No. 7,271,946 (18 September
2007
).
11.
S.
Kwon
,
V.
Milanovic´
, and
L. P.
Lee
,
IEEE J. Sel. Top. Quantum Electron.
10
,
498
(
2004
).
12.
H.
Tachibana
,
K.
Kawano
,
H.
Ueda
, and
H.
Noge
,
Proc. MEMS
959
,
2009
.
13.
O.
Tsuboi
,
Y.
Mizuno
,
N.
Koma
,
H.
Soneda
,
H.
Okuda
,
S.
Ueda
,
I.
Saw
, and
F.
Yamagishi
,
Proc. MEMS2002
532
,
2002
.
14.
L. D.
Landau
,
Course in theoretical physics
, 3rd ed., Vol.
1
(
Pergamon Press
,
Oxford, U.K.
,
1976
).
15.
E. T.
Carlen
,
K. H.
Heng
,
S.
Bakshi
,
A.
Pareek
, and
C. H.
Mastrangelo
,
J. Microelectromech. Syst.
14
,
1144
(
2005
).
16.
J. M.-L.
Tsai
,
H. -Y.
Chu
,
J.
Hsieh
, and
W.
Fang
,
J. Micromech. Microeng.
14
,
235
(
2004
).
17.
T.
Hirano
,
T.
Furuhata
,
K. J.
Gabriel
, and
H.
Fujita
,
J. Microelectromech. Syst.
1
,
52
(
1992
).
18.
J. -L. A.
Yeh
,
H.
Jiang
, and
N.
Tien
,
J. Microelectromech. Syst.
9
,
126
(
2000
).
19.
K.
Hane
and
M.
Sasaki
, in
Comprehensive Microsystems
, edited by
Y. B.
Gianchandani
,
O.
Tabata
, and
H.
Zappe
(Elsevier, Amsterdam,
2008
) Vol.
3
, p.
1
.
20.
C. K.
Chung
,
J. Micromech. Microeng.
14
,
656
(
2004
).
21.
H.
Jansen
,
M.
de Boer
,
R.
Wiegerink
,
N.
Tas
,
E.
Smulders
,
C.
Neagu
, and
M.
Elwenspoek
,
Microelectron. Eng.
35
,
45
(
1997
).
22.
H.
Toshiyoshi
,
W.
Piyawattanametha
,
C. T.
Chan
, and
M. C.
Wu
,
J. Microelectromech. Syst.
10
,
205
(
2001
).
23.
U.
Ljungblad
,
T.
Lock
, and
T.
Sandstrom
,
Microelectron. Eng.
83
,
663
(
2006
).
24.
L. C.
Shao
,
M.
Palaniapan
, and
W. W.
Tan
,
J. Micromech. Microeng.
18
,
065014
(
2008
).
You do not currently have access to this content.