Electron scattering in and secondary electron emission from multiwalled carbon nanotubes are investigated using Monte Carlo simulation. The method treats energy loss in a discrete manner, resulting from individual scattering events, rather than within a continuous-slowing-down approximation. Simulation results agree fairly well with the reported experimental data. The effect of number of nanotube walls is investigated and the energy distribution of the transmitted electrons is calculated. It is found that secondary electron yield in the low-primary-energy range is more sensitive to the number of walls and is maximized for a particular number of walls. The effect is not significant in the higher-primary-energy range. The effect of core electron ionization on secondary electron emission from nanotubes is found to be negligible because of the low scattering cross-section involved. The presented framework can also be applied to other small structures such as nanowires.

1.
N.
de Jonge
and
J. M.
Bonard
,
Philosophical Transactions of the Royal Society A
362
,
2239
(
2004
).
2.
W. S.
Kim
,
W.
Yi
,
S. G.
Yu
,
J.
Heo
,
T.
Jeong
,
J.
Lee
,
C. S.
Lee
,
J. M.
Kim
,
H. J.
Jeong
,
Y. M.
Shin
, and
Y. H.
Lee
,
Appl. Phys. Lett.
81
,
1098
(
2002
).
3.
A.
Nojeh
,
W. -K.
Wong
,
E.
Yieh
,
R. F. W.
Pease
, and
H.
Dai
,
J. Vac. Sci. Technol. B
22
,
3124
(
2004
).
4.
P.
Yaghoobi
and
A.
Nojeh
,
Mod. Phys. Lett. B
21
,
1807
(
2007
).
5.
Y.
Saito
,
Carbon Nanotube and Related Field Emitters
(
Wiley-VCH
,
Weinheim
,
2010
).
6.
T.
Brintlinger
Y. -F.
Chen
T.
Dürkop
,
E.
Cobas
,
M. S.
Fuhrer
,
J. D.
Barry
, and
J.
Melngailis
,
Appl. Phys. Lett.
81
,
2454
(
2002
).
7.
P.
Finnie
,
K.
Kaminska
,
Y.
Homma
,
D. G.
Austing
, and
J.
Lefebvre
,
Nanotechnology
19
,
335202
(
2008
).
8.
Y.
Homma
,
S.
Suzuki
,
Y.
Kobayashi
,
M.
Nagase
, and
D.
Takagi
,
Appl. Phys. Lett.
84
,
1750
(
2004
).
9.
D. C.
Joy
,
Monte Carlo Modeling for Electron Microscopy and Microanalysis
(
Oxford University Press
,
New York
,
1995
).
10.
M.
Dapor
,
Electron-Beam Interactions with Solids: Application of the Monte Carlo Method to Electron Scattering Problems
(
Springer
,
New York
,
2003
).
11.
D.
Drouin
,
A. R.
Couture
,
D.
Joly
,
X.
Tastet
,
V.
Aimez
, and
R.
Gauvin
,
Scanning
29
,
92
(
2007
).
12.
R.
Browning
,
T. Z.
Li
,
B.
Chui
,
J.
Ye
,
R. F. W.
Pease
,
Z.
Czyzewski
, and
D. C.
Joy
,
J. Appl. Phys.
76
,
2016
(
1994
).
13.
R.
Shimizu
,
Y.
Kataoka
,
T.
Matsukawa
,
T.
Ikuta
,
K.
Murata
, and
H.
Hashimoto
,
J. Phys. D
8
,
820
(
1975
).
14.
R.
Browning
,
T. Z.
Li
,
B.
Chui
,
J.
Ye
,
R. F. W.
Pease
,
Z.
Czyzewski
, and
D. C.
Joy
,
Scanning
17
,
250
(
1995
).
15.
N. W. M.
Ritchie
,
Surf. Interface Anal.
37
,
1006
(
2005
).
16.
R.
Gauvin
,
E.
Lifshin
,
H.
Demers
,
P.
Horny
, and
H.
Campbell
,
Microsc. Microanal.
12
,
49
(
2006
).
17.
C. G. H.
Walker
,
M. M.
El-Gomati
,
A. M. D.
Assa'd
, and
M.
Zadrazil
,
Scanning
30
,
365
(
2008
).
18.
K.
Murata
,
M.
Yasuda
, and
H.
Kawata
,
Scanning
17
,
228
(
1995
).
19.
R.
Shimizu
,
Y.
Kataoka
,
T.
Ikuta
,
T.
Koshikawa
, and
H.
Hashimoto
,
J. Phys. D
9
,
101
(
1976
).
20.
M. K.
Alam
,
P.
Yaghoobi
,
M.
Chang
, and
A.
Nojeh
,
Appl. Phys. Lett.
97
,
261902
(
2010
).
21.
X.
Liang
,
Z.
Fu
, and
S. Y.
Chou
,
Nano Lett.
7
,
3840
(
2007
).
22.
M. K.
Alam
,
P.
Yaghoobi
, and
A.
Nojeh
,
J. Vac. Sci. Technol. B
28
,
C6J13
(
2010
).
23.
M. K.
Alam
,
P.
Yaghoobi
, and
A.
Nojeh
,
Scanning
31
,
221
(
2009
).
24.
M. M.
Brzhezinskaya
and
E. M.
Baitinger
,
Trends in Nanotube Research
(
Nova Science Publishers
,
New York
,
2006
).
25.
G.
Chiarello
,
E.
Maccallini
,
R. G.
Agostino
,
V.
Formoso
,
A.
Cupolillo
,
D.
Pacile
,
E.
Colavita
,
L.
Papagno
,
L.
Petaccia
,
R.
Larciprete
,
S.
Lizzit
, and
A.
Goldoni
,
Carbon
41
,
985
(
2003
).
26.
B. J.
LeRoy
,
S. G.
Lemay
,
J.
Kong
, and
C.
Dekker
,
Nature (London)
432
,
371
(
2004
).
27.
L.
Reimer
,
Scanning Electron Microscopy: Physics of Image Formation and Microanalysis
(
Springer
,
Berlin
,
1998
).
28.
L. N.
Pandey
and
M. L.
Rustgi
,
J. Appl. Phys.
66
,
6059
(
1989
).
29.
F.
Arezzo
,
N.
Zacchetti
, and
W.
Zhu
,
J. Appl. Phys.
75
,
5375
(
1994
).
31.
N. V.
Smith
and
W. E.
Spicer
,
Phys. Rev.
188
,
593
(
1969
).
32.
D. C.
Joy
and
S.
Luo
,
Scanning
11
,
176
(
1989
).
33.
M. H.
Gass
,
U.
Bangert
,
A. L.
Bleloch
,
P.
Wang
,
R. R.
Nair
, and
A. K.
Geim
,
Nat. Nanotechnol.
3
,
676
(
2008
).
34.
35.
D.
Drouin
,
P.
Hovington
, and
R.
Gauvin
,
Scanning
19
,
20
(
1997
).
36.
Z.
Czyzewski
,
D.
O’Neill MacCallum
,
A.
Romig
, and
D. C.
Joy
,
J. Appl. Phys.
68
,
3066
(
1990
).
37.
X.
Wei
,
D.
Golberg
,
Q.
Chen
,
Y.
Bando
, and
L.
Peng
,
Nano Lett.
11
,
734
(
2011
).
38.
J. -Y.
Park
,
S.
Rosenblatt
,
Y.
Yaish
,
V.
Sazonova
,
H.
Üstünel
,
S.
Braig
,
T. A.
Arias
,
P. W.
Brouwer
, and
P. L.
McEuen
,
Nano Lett.
4
,
517
(
2004
).
39.
A.
Rivacoba
and
F. J.
García de Abajo
,
Phys. Rev. B
67
,
085414
(
2003
).
41.
D.
Emfietzoglou
,
I.
Kyriakou
,
R.
Garcia-Molina
,
I.
Abril
, and
K.
Kostarelos
,
J. Appl. Phys.
108
,
054312
(
2010
).
42.
O.
Stéphan
,
D.
Taverna
,
M.
Kociak
,
K.
Suenaga
,
L.
Henrard
, and
C.
Colliex
,
Phys. Rev. B
66
,
155422
(
2002
).
43.
M. K.
Alam
,
S. P.
Eslami
, and
A.
Nojeh
,
Physica E
42
,
124
(
2009
).
You do not currently have access to this content.