A stochastic model of the resistive switching mechanism in bipolar metal-oxide-based resistive random access memory (RRAM) is presented. The distribution of electron occupation probabilities obtained is in good agreement with previous work. In particular, it is shown that a low occupation region is formed near the cathode. Our simulations of the temperature dependence of the electron occupation probabilities near the anode and the cathode demonstrate a high robustness of the low and high occupation regions. This result indicates that a decrease in the switching time with increasing temperature cannot be explained only by reduced occupations of the vacancies in the low occupation region, but is rather related to an increase in the mobility of the oxide ions. A hysteresis cycle of a RRAM simulated with the stochastic model is in agreement with experimental results.

1.
B. C.
Lee
,
P.
Zhou
,
J.
Yang
,
Y. T.
Zhang
,
B.
Zhao
,
E.
Ipek
,
O.
Mutlu
, and
D.
Burger
,
IEEE MICRO
30
,
143
(
2010
).
2.
M. H.
Kryder
and
C. S.
Kim
,
IEEE Trans. Magn.
45
,
3406
(
2009
).
3.
C.
Kugeler
,
C.
Nauenheim
,
M.
Meier
,
A.
Rudiger
, and
R.
Waser
,
Non-Volatile Memory Technology Symposium, NVMTS
,
2008
, 9th Annual, p.
6
.
4.
L. E.
Yu
,
S.
Kim
,
M. K.
Ryu
,
S. Y.
Choi
, and
Y. K.
Choi
,
IEEE Electron Device Lett.
29
,
331
(
2008
).
5.
D. S.
Jeong
,
H.
Schroeder
,
U.
Breuer
, and
R.
Waser
,
J. Appl. Phys.
104
,
123716
(
2008
).
6.
H.
Shima
,
N.
Zhong
, and
H.
Akinaga
,
Appl. Phys. Lett.
94
,
082905
(
2009
).
7.
Y. S.
Chen
,
T. Y.
Wu
, and
P. J.
Tzeng
,
2009 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA)
,
2009
, pp.
37
and
38
.
8.
R.
Dong
,
D. S.
Lee
,
W. F.
Xiang
,
S. J.
Oh
,
D. J.
Seong
, and
S. H.
Heo
,
Appl. Phys. Lett.
90
,
042107
(
2007
).
9.
S.
Seo
 et al.,
Appl. Phys. Lett.
86
,
093509
(
2005
).
10.
S.
Lee
,
H.
Kim
,
D. J.
Yun
,
S. W.
Rhee
, and
K.
Yong
,
Appl. Phys. Lett.
95
,
262113
(
2009
).
11.
Y.
Watanabe
,
J. G.
Bednorz
,
A.
Bietsch
,
Ch.
Gerber
,
D.
Widmer
,
A.
Beck
, and
S. J.
Wind
,
Appl. Phys. Lett.
78
,
3738
(
2001
).
12.
C. C.
Lin
,
C. Y.
Lin
, and
M. H.
Lin
,
IEEE Trans. Electron Devices
54
,
3146
(
2007
).
13.
A.
Sawa
,
T.
Fujii
,
M.
Kawasaki
, and
Y.
Tokura
,
Appl. Phys. Lett.
85
,
4073
(
2004
).
14.
T.
Fujii
,
M.
Kawasaki
,
A.
Sawa
,
H.
Akoh
,
Y.
Kawazoe
, and
Y.
Tokura
,
Appl. Phys. Lett.
86
,
012107
(
2005
).
15.
Y. B.
Nian
,
J.
Strozier
,
N. J.
Wu
,
X.
Chen
, and
A.
Ignatiev
,
Phys. Rev. Lett.
98
,
146403
(
2007
).
16.
S. X.
Wu
,
L. M.
Xu
, and
X. J.
Xing
,
Appl. Phys. Lett.
93
,
043502
(
2008
).
17.
K.
Szot
,
W.
Speier
,
G.
Bihlmayer
, and
R.
Waser
,
Nature Mater.
5
,
312
(
2006
).
18.
Y.
Nishi
and
J. R.
Jameson
,
Device Research Conference
,
2008
(unpublished), pp.
271
274
.
19.
B.
Gao
,
B.
Sun
,
H.
Zhang
,
L.
Liu
,
X.
Liu
,
R.
Han
,
J.
Kang
, and
B.
Yu
,
IEEE Electron Device Lett.
30
,
1326
(
2009
).
20.
M. J.
Rozenberg
,
I. H.
Inoue
, and
M. J.
Sanchez
,
Phys. Rev. Lett.
92
,
178302
(
2004
).
21.
K.
Kinoshita
,
T.
Tamura
,
H.
Aso
,
H.
Noshiro
,
C.
Yoshida
,
M.
Aoki
,
Y.
Sugiyama
, and
H.
Tanaka
,
Non-Volatile Semiconductor Memory Workshop, IEEE NVSMW
2006
, 21st, pp.
84
and
85
.
22.
U.
Russo
,
D.
Ielmini
,
C.
Cagli
,
A. L.
Lacaita
,
S.
Spiga
,
C.
Wiemer
,
M.
Perego
, and
M.
Fanciulli
,
Tech. Dig. - Int. Electron Devices Meet.
2007
,
775
.
23.
S.
Kim
and
Y. K.
Choi
,
IEEE Trans. Electron Devices
56
,
3049
(
2009
).
24.
A. N.
Korotkov
and
K. K.
Likharev
,
Phys. Rev. B
61
,
15975
(
2000
).
25.
K. K.
Likharev
,
N. S.
Bakhvalov
,
G. S.
Kazacha
, and
S. I.
Serduykova
,
IEEE Trans. Magn.
25
,
1436
(
1989
).
26.
V.
Sverdlov
,
A. N.
Korotkov
, and
K. K.
Likharev
,
Phys. Rev. B
63
,
081302
(
2001
).
27.
C. Y.
Lin
,
C. Y.
Wu
,
C. -Y.
Wu
,
T. C.
Lee
,
F. L.
Yang
,
C.
Hu
, and
T. Y.
Tseng
,
IEEE Electron Device Lett.
28
,
366
(
2007
).
28.
W. G.
Kim
and
S. W.
Rhee
,
Microelectron. Eng.
87
,
98
(
2010
).
You do not currently have access to this content.