In order for sub-10 nm thin films of ZrO2 to have a dielectric constant larger than 30 they need to be crystalline. This is done by either depositing the layer at higher temperatures or by a postdeposition annealing step. Both methods induce high leakage currents in ZrO2 based dielectrics. In order to understand the leakage a thickness series of ultrathin ZrO2 and nanolaminate ZrO2/Al2O3/ZrO2 (ZAZ) films, deposited by atomic layer deposition, was investigated. After deposition these films were subjected to different rapid thermal annealing (RTA) processes. Grazing incidence x-ray diffraction and transmission electron microscopy yield that the crystallization of ZrO2 during deposition is dependent on film thickness and on the presence of an Al2O3 sublayer. Moreover, the incorporation of Al2O3 prevents crystallites from spanning across the entire film during RTA. C-V and I-V spectroscopies show that after a 650°C RTA in N2 the capacitance equivalent oxide thickness of 10 nm ZAZ films is reduced to 1.0 nm while maintaining low leakage currents of 3.2×108A/cm2 at 1 V. Conductive atomic force microscopy studies yield that currents are not associated with significant morphological features in amorphous layers. However, after crystallization, the currents at crystallite grain boundaries are increased in ZrO2 and ZAZ films.

2.
Kyoung-Ryul
Yoon
,
Ki-Vin
Im
,
Jea-Hyun
Yeo
,
Eun-Ae
Chung
,
Young-Sun
Kim
,
Cha-Young
Yoo
,
Sung-Tae
Kim
,
U-In
Chung
, and
Joo-Tae
Moon
,
Extended Abstracts of the 2005 International Conference on Solid State Devices and Materials
, Kobe, Japan,
2005
(unpublished), p.
188
.
3.
Ho Jin
Cho
 et al.,
Solid-State Electron.
51
,
1529
(
2007
).
4.
Y. K.
Park
 et al.,
Dig. Tech. Pap. - Symp. VLSI Technol.
2007
,
190
(
2007
).
5.
Deok-Sin
Kil
 et al.,
Dig. Tech. Pap. - Symp. VLSI Technol.
2006
,
38
(
2006
).
6.
D.
Zhou
 et al.,
J. Appl. Phys.
(accepted).
7.
W.
Weinreich
 et al.,
J. Vac. Sci. Technol. B
21
,
354
(
2009
).
8.
V.
Yanev
 et al.,
Appl. Phys. Lett.
92
,
252910
(
2008
).
9.
E.
Paskaleva
,
M.
Lemberger
,
A. J.
Bauer
,
W.
Weinreich
,
J.
Heitmann
,
E.
Erben
,
U.
Schröder
, and
L.
Overbeck
,
J. Appl. Phys.
106
,
054107
(
2009
).
10.
O.
Bierwagen
,
L.
Geelhaar
,
X.
Gay
,
M.
Piesins
,
B.
Jobst
,
A.
Rucki
, and
H.
Riechert
,
Appl. Phys. Lett.
90
,
232901
(
2007
).
11.
D.
Martin
,
M.
Grube
,
W. M.
Weber
,
J.
Rüstig
,
O.
Bierwagen
,
L.
Geelhaar
, and
H.
Riechert
,
Appl. Phys. Lett.
95
,
142906
(
2009
).
12.
W.
Weinreich
 et al.,
Microelectron. Eng.
86
,
1826
(
2009
).
13.
X.
Zhao
and
D.
Vanderbilt
,
Phys. Rev. B
65
,
075105
(
2002
).
14.
J.
McPherson
,
J. -Y.
Kim
,
A.
Shanware
, and
H.
Mogul
,
Appl. Phys. Lett.
82
,
2121
(
2003
).
15.
M.
Grube
,
D.
Martin
,
W. M.
Weber
,
O.
Bierwagen
,
L.
Geelhaar
, and
H.
Riechert
,
IEEE Proceedings of SCS2009
,
2009
, Paper No. SCS-NM-27.
You do not currently have access to this content.