The interaction of H atoms with the curved concentric graphene walls of a multiwall carbon nanotube and the stacked planar graphene sheets of graphite was investigated using a combination of high resolution transmission electron microscopy (HRTEM) in conjunction with electron energy-loss and Raman spectroscopies. Continuous cylindrical graphene walls of a nanotube are etched and amorphized by the H atoms. Etching is not uniform across the length of the CNT but rather, small etch pits form at defective sites on the CNT walls along the entire nanotube length. Once an etch pit is formed, etching proceeds rapidly, and the remainder of the CNT is quickly etched away. The carbon K core-loss edge spectra collected from etch pits do not differ from the spectra collected from pristine CNT walls, indicating that reactions occur exclusively at the exposed graphene edges. Similar observations were made when sheets of planar graphite were exposed to H atoms. Confocal Raman spectroscopic measurements revealed that H etching occurs preferentially at the graphite edges. Eventually, large holes appear in the graphite, as observed under HRTEM. Etched holes in planar graphite are similar to the etch pits that form when a graphene layer is rolled up to form the cylindrical walls of a CNT. Once a hole or an etch pit is formed, the edges of the planar graphene sheets or cylindrical CNT walls become exposed, and H etching proceeds quickly from these edges.

1.
M.
Meyyappan
,
L.
Delzeit
,
A.
Cassell
, and
D.
Hash
,
Plasma Sources Sci. Technol.
12
,
205
(
2003
).
2.
A. C.
Dillon
,
K. M.
Jones
,
T. A.
Bekkedahl
,
C. H.
Kiang
,
D. S.
Bethune
, and
M. J.
Heben
,
Nature (London)
386
,
377
(
1997
).
3.
M. J.
Behr
,
E. A.
Gaulding
,
K. A.
Mkhoyan
, and
E. S.
Aydil
,
J. Appl. Phys.
108
,
053303
(
2010
).
4.
J. B. O.
Caughman
,
L. R.
Baylor
,
M. A.
Guillorn
,
V. I.
Merkulov
,
D. H.
Lowndes
, and
L. F.
Allard
,
Appl. Phys. Lett.
83
,
1207
(
2003
).
5.
T. Y.
Lee
 et al,
Diamond Relat. Mater.
12
,
1335
(
2003
).
6.
P. E.
Nolan
,
D. C.
Lynch
, and
A. H.
Cutler
,
J. Phys. Chem. B
102
,
4165
(
1998
).
7.
M. S.
Bell
,
K. B. K.
Teo
, and
W. I.
Milne
,
J. Phys. D: Appl. Phys.
40
,
2285
(
2007
).
8.
M.
Chhowalla
,
K. B. K.
Teo
,
C.
Ducati
,
N. L.
Rupesinghe
,
G. A. J.
Amaratunga
,
A. C.
Ferrari
,
D.
Roy
,
J.
Robertson
, and
W. I.
Milne
,
J. Appl. Phys.
90
,
5308
(
2001
).
9.
Y. S.
Woo
,
D. Y.
Jeon
,
I. T.
Han
,
N. S.
Lee
,
J. E.
Jung
, and
J. M.
Kim
,
Diamond Relat. Mater.
11
,
59
(
2002
).
10.
S. H.
Lim
,
H. S.
Yoon
,
J. H.
Moon
,
K. C.
Park
, and
J.
Jang
,
Appl. Phys. Lett.
88
,
033114
(
2006
).
11.
L.
Delzeit
,
I.
McAninch
,
B. A.
Cruden
,
D.
Hash
,
B.
Chen
,
J.
Han
, and
M.
Meyyappan
,
J. Appl. Phys.
91
,
6027
(
2002
).
12.
G. Y.
Zhang
,
P. F.
Qi
,
X. R.
Wang
,
Y. R.
Lu
,
D.
Mann
,
X. L.
Li
, and
H. J.
Dai
,
J. Am. Chem. Soc.
128
,
6026
(
2006
).
13.
V.
Barone
,
J.
Heyd
, and
G. E.
Scuseria
,
J. Chem. Phys.
120
,
7169
(
2004
).
14.
D. C.
Elias
 et al,
Science
323
,
610
(
2009
).
15.
A.
Nikitin
,
H.
Ogasawara
,
D.
Mann
,
R.
Denecke
,
Z.
Zhang
,
H.
Dai
,
K.
Cho
, and
A.
Nilsson
,
Phys. Rev. Lett.
95
,
225507
(
2005
).
16.
H.
Zhang
,
F. W.
Meyer
,
H. M.
Meyer
, and
M. J.
Lance
,
Vacuum
82
,
1285
(
2008
).
17.
A. R.
Muniz
,
T.
Singh
, and
D.
Maroudas
,
Appl. Phys. Lett.
94
,
103108
(
2009
).
18.
W.
Lisowski
,
E. G.
Keim
,
A. H. J.
van den Berg
, and
M. A.
Smithers
,
Carbon
43
,
1073
(
2005
).
19.
F. B.
Rao
,
T.
Li
, and
Y. L.
Wang
,
Physica E (Amsterdam)
40
,
779
(
2008
).
20.
A. R.
Muniz
,
T.
Singh
,
E. S.
Aydil
, and
D.
Maroudas
,
Phys. Rev. B
80
,
144105
(
2009
).
21.
T.
Singh
,
M. J.
Behr
,
E. S.
Aydil
, and
D.
Maroudas
,
Chem. Phys. Lett.
474
,
168
(
2009
).
22.
L. T.
Sun
,
J. L.
Gong
,
Z. Y.
Zhu
,
D. Z.
Zhu
,
S. X.
He
,
Z. X.
Wang
,
Y.
Chen
, and
G.
Hu
,
Appl. Phys. Lett.
84
,
2901
(
2004
).
23.
Q. Q.
Yang
,
S. L.
Yang
,
C. J.
Xiao
, and
A.
Hirose
,
Mater. Lett.
61
,
2208
(
2007
).
24.
M. J.
Behr
,
K. A.
Mkhoyan
, and
E. S.
Aydil
,
ACS Nano
4
,
5087
(
2010
).
25.
S.
Agarwal
,
A.
Takano
,
M. C. M.
van de Sanden
,
D.
Maroudas
, and
E. S.
Aydil
,
J. Chem. Phys.
117
,
10805
(
2002
).
26.
R. D.
Leapman
and
J.
Silcox
,
Phys. Rev. Lett.
42
,
1361
(
1979
).
27.
R. F.
Egerton
,
Electron Energy-Loss Spectroscopy in the Electron Microscope
(
Plenum
,
New York
,
1996
), pp.
272
277
.
28.
R. D.
Leapman
,
P. L.
Fejes
, and
J.
Silcox
,
Phys. Rev. B
28
,
2361
(
1983
).
29.
A. C.
Ferrari
and
J.
Robertson
,
Phys. Rev. B
61
,
14095
(
2000
).
30.
F.
Tuinstra
and
J. L.
Koenig
,
J. Chem. Phys.
53
,
1126
(
1970
).
31.
A. C.
Ferrari
,
Solid State Commun.
143
,
47
(
2007
).
32.
A.
Cuesta
,
P.
Dhamelincourt
,
J.
Laureyns
,
A.
Martinez-Alonso
, and
J. M. D.
Tascon
,
J. Mater. Chem.
8
,
2875
(
1998
).
33.
R. J.
Nemanich
and
S. A.
Solin
,
Phys. Rev. B
20
,
392
(
1979
).
34.
C.
Thomsen
and
S.
Reich
,
Phys. Rev. Lett.
85
,
5214
(
2000
).
35.
R.
Saito
,
A.
Jorio
,
A. G.
Souza
,
G.
Dresselhaus
,
M. S.
Dresselhaus
, and
M. A.
Pimenta
,
Phys. Rev. Lett.
88
,
207401
(
2002
).
36.
A.
Sadezky
,
H.
Muckenhuber
,
H.
Grothe
,
R.
Niessner
, and
U.
Poschl
,
Carbon
43
,
1731
(
2005
).
37.
Y.
Wang
,
D. C.
Alsmeyer
, and
R. L.
McCreery
,
Chem. Mater.
2
,
557
(
1990
).
38.
L. G.
Cancado
,
M. A.
Pimenta
,
B. R. A.
Neves
,
M. S. S.
Dantas
, and
A.
Jorio
,
Phys. Rev. Lett.
93
,
4
(
2004
).
39.
G. Y.
Zhang
 et al,
Proc. Natl. Acad. Sci. U.S.A.
102
,
16141
(
2005
).
40.
Y.
Lifshitz
,
Diamond Relat. Mater.
12
,
130
(
2003
).
41.
K.
Saitoh
,
K.
Nagasaka
, and
N.
Tanaka
,
J. Electron Microsc.
55
,
281
(
2007
).
42.
S. D.
Berger
,
D. R.
McKenzie
, and
P. J.
Martin
,
Philos. Mag. Lett.
57
,
285
(
1988
).
43.
R. F.
Egerton
and
M. J.
Whelan
,
J. Electron Spectrosc. Relat. Phenom.
3
,
232
(
1974
).
44.
P. J.
Fallon
and
L. M.
Brown
,
Diamond Relat. Mater.
2
,
1004
(
1993
).
45.
C. G.
Van de Walle
,
Phys. Rev. Lett.
85
,
1012
(
2000
).
46.
C.
Kılıç
and
A.
Zunger
,
Appl. Phys. Lett.
81
,
73
(
2002
).
47.
C. A.
Wolden
,
T. M.
Barnes
,
J. B.
Baxter
, and
E. S.
Aydil
,
J. Appl. Phys.
97
,
043522
(
2005
).
48.
J. I.
Pankove
,
Optical Processes in Semiconductors
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1971
), pp.
74
76
.
49.
S. M.
Han
and
E. S.
Aydil
,
J. Appl. Phys.
83
,
2172
(
1998
).
50.
N. J.
Harrick
,
Internal Reflection Spectroscopy
(
Interscience
,
New York
,
1967
), p.
17
.
51.
T.
Minami
,
MRS Bull.
25
,
38
(
2000
).
You do not currently have access to this content.