The effect of surface contamination and subsequent mask surface cleaning on the lithographic performance of an extreme ultraviolet (EUV) mask is investigated. SEMATECH’s Berkeley microfield exposure tool printed 40 and 50 nm line and space (L/S) patterns are evaluated to compare the performance of a contaminated and cleaned mask to an uncontaminated mask. Since the two EUV masks have different absorber architectures, optical imaging models and aerial image calculations were performed to determine any expected differences in performance. The measured and calculated Bossung curves, process windows, and exposure latitudes for the two sets of L/S patterns are compared to determine how the contamination and cleaning impacts the lithographic performance of EUV masks. The observed differences between the two masks are shown to be well within the expected process variation of 10%, indicating that the cleaning process did not appreciably affect the mask performance.

1.
R. H.
Stulen
and
D. W.
Sweeney
,
IEEE J. Quantum Electron.
35
,
694
(
1999
).
2.
EUV Lithography
, edited by
V.
Bakshi
(
SPIE
,
Bellingham, Washington
,
2007
).
3.
O.
Wood
 et al.,
Proc. SPIE
7271
,
727104
(
2009
).
4.
S.
Wurm
,
F.
Goodwin
, and
H.
Yun
,
Solid State Technol.
52
(
2
) (
2009
).
5.
H.
Kinoshita
,
T.
Watanabe
,
A.
Ozawa
, and
M.
Niibe
,
Proc. SPIE
3412
,
358
(
1998
).
6.
B.
LaFontaine
,
A. R.
Pawloski
,
Y.
Deng
,
C.
Chovino
,
L.
Dieu
,
O. R.
Wood
 II
, and
H. J.
Levinson
,
Proc. SPIE
5374
,
300
(
2004
).
7.
A.
Wüest
,
IEUVI Optics Contamination and Lifetime Technical Working Group Presentation
, 2 October
2008
(unpublished).
8.
Y. -J.
Fan
 et al.,
IEUVI Optics Contamination and Lifetime Technical Working Group Presentation
, 26 February
2009
(unpublished).
9.
Y.
Nishiyama
,
T.
Anazawa
,
H.
Oizumi
,
I.
Nishiyama
,
O.
Suga
,
K.
Abe
,
S.
Kagata
, and
A.
Izumi
,
Proc. SPIE
6921
,
692116
(
2008
).
10.
P. P.
Naulleau
,
K. A.
Goldberg
,
P.
Batson
,
J.
Bokor
,
P.
Denham
, and
S.
Rekawa
,
Appl. Opt.
42
,
820
(
2003
).
11.
P. P.
Naulleau
 et al.,
Proc. SPIE
6921
,
69213N
(
2008
).
12.
P. P.
Naulleau
,
K. A.
Goldberg
,
E.
Anderson
,
J. P.
Cain
,
P.
Denham
,
K.
Jackson
,
A. -S.
Morlens
,
S.
Rekawa
, and
F.
Salmassi
,
J. Vac. Sci. Technol. B
22
,
2962
(
2004
).
13.
SuMMIT Software Division of EUV Technology, SUMMIT Litho Image Analysis Software,
2009
, http://www.euvl.com/summit/.
14.
Panoramic Technology, EM-SUITE: Core Lithography Simulation Package,
2009
, http://www.panoramictech.com.
15.
The HOST function (name coined by IBM) is derived from the reaction diffusion equations to provide the shape of the postexposure bake (PEB) deprotection blur (Lorentzian-type widening of the features in resist) which occurs around each released acid. For the process window modeling, the HOST function is convolved with the aerial image to yield the deprotection statistics.
16.
F.
Houle
,
W.
Hinsberg
,
M.
Morrison
,
M.
Sanchez
,
G.
Wallraff
,
C.
Larson
, and
J.
Hoffnagle
,
J. Vac. Sci. Technol. B
18
,
1874
2000
.
17.
Gregg M.
Gallatin
,
Proc. SPIE
5754
,
38
(
2004
).
You do not currently have access to this content.