The authors have grown MnAs on highly oriented pyrolytic graphite (HOPG), a strain-free and inert substrate, using molecular beam epitaxy. MnAs on HOPG grows in the form of particles, which self-assemble to form wirelike structures along the step edges on the HOPG surface. The MnAs particles have an average height of 42 nm and a diameter of 240 nm. Vibrating sample magnetometry studies indicate that the samples are ferromagnetic with no observable in-plane anisotropy, which is expected from a sample with a random distribution of particle orientations. Magnetic force microscopy (MFM) results indicate that the magnetic coupling between particles is less than that within each particle, and likely a dipole-dipole interaction, giving rise to magnetization patterns for the wires. Temperature dependent MFM measurements yield a Curie temperature of 330 K. Scanning tunneling microscopy and scanning tunneling spectroscopy were used to investigate the electronic density of states of MnAs, with the well-studied HOPG surface as a convenient reference.

1.
K.
Akeura
,
M.
Tanaka
,
M.
Ueki
, and
T.
Nishinaga
,
Appl. Phys. Lett.
67
,
3349
(
1995
).
2.
M.
Tanaka
,
J. P.
Harbison
,
T.
Sands
,
T. L.
Cheeks
,
V. G.
Keramidas
, and
G. M.
Rothberg
,
J. Vac. Sci. Technol. B
12
,
1091
(
1994
).
3.
M.
Tanaka
,
J. P.
Harbison
,
M. C.
Park
,
Y. S.
Park
,
T.
Shin
, and
G. M.
Rothberg
,
Appl. Phys. Lett.
65
,
1964
(
1994
).
4.
M.
Ramsteiner
 et al.,
Phys. Rev. B
66
,
081304
(
2002
).
5.
Kwang-Su
Ryu
,
JinBae
Kim
,
YoungPak
Lee
,
Hiro
Akinaga
,
Takashi
Manago
,
Ravindranath
Viswan
, and
Sung-Chul
Shin
,
Appl. Phys. Lett.
89
,
232506
(
2006
).
6.
L.
Däweritz
,
Rep. Prog. Phys.
69
,
2581
(
2006
).
7.
G.
Schmidt
,
D.
Ferrand
,
L. W.
Molenkamp
,
A. T.
Filip
, and
B. J.
van Wees
,
Phys. Rev. B
62
,
R4790
(
2000
).
8.
R. P.
Panguluri
,
G.
Tsoi
,
B.
Nadgorny
,
S. H.
Chun
,
N.
Samarth
, and
I. I.
Mazin
,
Phys. Rev. B
68
,
201307
(
2003
).
9.
H.
Zhang
,
S. S.
Kushvaha
,
A. T. S.
Wee
, and
W.
Xue-sen
,
J. Appl. Phys.
102
,
023906
(
2007
).
10.
G. M.
Francis
,
L.
Kuipers
,
J. R. A.
Cleaver
, and
R. E.
Palmer
,
J. Appl. Phys.
79
,
2942
(
1996
).
11.
B.
Blum
,
R. C.
Salvarezza
, and
A. J.
Arvia
,
J. Vac. Sci. Technol. B
17
,
2431
(
1999
).
12.
E. D.
Fraser
,
C. H.
Kim
,
S.
Hegde
,
H.
Zeng
,
H.
Luo
, and
P. K.
Wei
,
J. Appl. Phys.
104
,
033921
(
2008
).
13.
D.
Rugar
,
H. J.
Mamin
,
P.
Guethner
,
S. E.
Lambert
,
J. E.
Stern
,
I.
McFadyen
, and
T.
Yogi
,
J. Appl. Phys.
68
,
1169
(
1990
).
14.
R.
Engel-Herbert
,
J.
Mohanty
,
A.
Ney
,
T.
Hesjedal
,
L.
Däweritz
, and
K. H.
Ploog
,
Appl. Phys. Lett.
84
,
1132
(
2004
).
15.
R. J.
Hamers
,
Annu. Rev. Phys. Chem.
40
,
531
(
1989
).
16.
Y.
Niimi
,
T.
Matsui
,
H.
Kambara
,
K.
Tagami
,
M.
Tsukada
, and
Hiroshi
Fukuyama
,
Phys. Rev. B
73
,
085421
(
2006
).
17.
A.
Kubetzka
,
M.
Bode
,
O.
Pietzsch
, and
R.
Wiesendanger
,
Phys. Rev. Lett.
88
,
057201
(
2002
).
18.
You do not currently have access to this content.