Strained silicon techniques have become an indispensable technology feature, enabling the momentum of semiconductor scaling. Embedded silicon-germanium (eSiGe) is already widely adopted in the industry and delivers outstanding p-metal oxide semiconductor field effect transistor (MOSFET) performance improvements. The counterpart for n-MOSFET is embedded silicon-carbon (eSi:C). However, n-MOSFET performance improvement is much more difficult to achieve with eSi:C due to the challenging process integration. In this study, detailed TCAD simulations are employed to compare the efficiency of eSiGe and eSi:C stressors and to estimate their potential for performance enhancements in future nanoscaled devices with gate lengths down to 20nm. It is found that eSiGe as a stressor is superior to eSi:C in deeply scaled and highly strained devices due to its easier process integration, reduced parasitic resistance, and nonlinear effects in the silicon band structure, favoring hole mobility enhancement at high strain levels.

1.
M.
Horstmann
 et al.,
Tech. Dig. - Int. Electron Devices Meet.
2005
,
233
.
2.
M.
Wiatr
 et al.,
Proceedings of the 15th Conference on Rapid Thermal Processing
,
2007
(unpublished), pp.
19
29
.
3.
K.
Rim
 et al.,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
49
.
4.
Z.
Ren
 et al.,
IEEE Symposium on VLSI Technology
,
2008
(unpublished), pp.
172
and
173
.
5.
C.
Auth
 et al.,
IEEE Symposium on VLSI Technology
,
2008
(unpublished), pp.
128
and
129
.
6.
F. W.
Voltmer
and
F. A.
Padovani
,
Proceedings of Semiconductor Silicon Materials Science Technology
,
1973
(unpublished), pp.
75
82
.
7.
Y.-C.
Yeo
and
J.
Sun
,
Appl. Phys. Lett.
86
,
023103
(
2005
).
8.
G.
Eneman
 et al.,
IEEE Trans. Electron Devices
53
,
1647
(
2006
).
9.
K.-J.
Chui
,
K.-W.
Ang
,
N.
Balasubramanian
,
M.-F.
Li
,
G. S.
Samudra
, and
Y.-C.
Yeo
,
IEEE Trans. Electron Devices
54
,
249
(
2007
).
10.
G.
Eneman
,
E.
Simoen
,
P.
Verheyen
, and
K.
De Meyer
,
IEEE Trans. Electron Devices
55
,
2703
(
2008
).
11.
P. R.
Chidambaram
,
C.
Bowen
,
S.
Chakravarthi
,
C.
Machala
, and
R.
Wise
,
IEEE Trans. Electron Devices
53
,
944
(
2006
).
12.
K.
Uchida
,
T.
Krishnamohan
,
K. C.
Saraswat
, and
Y.
Nishit
,
Tech. Dig. - Int. Electron Devices Meet.
2005
,
129
.
13.
M.
Berti
,
D.
De Salvador
,
A. V.
Drigo
,
F.
Romanato
,
J.
Stangl
,
S.
Zerlauth
,
F.
Schäffler
, and
G.
Bauer
,
Appl. Phys. Lett.
72
,
1602
(
1998
).
14.
J. L.
Egley
and
D.
Chidambarrao
,
Solid-State Electron.
36
,
1653
(
1993
).
15.
E.
Ungersboeck
,
S.
Dhar
,
G.
Karlowatz
,
H.
Kosina
, and
S.
Selberherr
,
Proceedings of the 11th International Workshop on Computer Electronics (IWCE)
,
2006
(unpublished), pp.
141
and
142
.
16.
B.
Obradovic
,
P.
Matagne
,
L.
Shifren
,
E.
Wang
,
M.
Stettler
,
J.
He
, and
M. D.
Giles
,
Proceedings of the Tenth International Workshop on Computer Electronics (IWCE)
,
2004
(unpublished), pp.
26
and
27
.
17.
Sentaurus Device User Guide A-2008.09, Synopsys, Inc. (
2008
).
18.
C. C.
Wang
,
Y. M.
Sheu
,
S.
Liu
,
R.
Duffy
,
A.
Heringa
,
N. E. B.
Cowern
, and
P. B.
Griffin
,
Mater. Sci. Eng., B
124–125
,
39
(
2005
).
19.
Y.
Kanda
,
IEEE Trans. Electron Devices
29
,
64
(
1982
).
20.
M. L.
Lee
,
E. A.
Fitzgerald
,
M. T.
Bulsara
,
M. T.
Currie
, and
A.
Lochtefeld
,
J. Appl. Phys.
97
,
011101
(
2005
).
21.
S. E.
Thompson
,
G.
Sun
,
K.
Wu
,
J.
Lim
, and
T.
Nishida
,
Tech. Dig. - Int. Electron Devices Meet.
2004
,
221
.
22.
Y.
Sun
,
S. E.
Thompson
, and
T.
Nishida
,
J. Appl. Phys.
101
,
104503
(
2007
).
23.
M.
Sinha
,
E. F.
Chor
, and
C. F.
Tan
,
Appl. Phys. Lett.
91
,
242108
(
2007
).
24.
Y.
Liu
 et al.,
IEEE Symposium on VLSI Technology
,
2007
(unpublished), pp.
44
45
.
You do not currently have access to this content.