Separating particles from a suspension and sorting particles into different size ranges are important to many chemical, biological, and bioengineering applications. In this article, a novel lateral-flow particle separation device is presented for continuous particle fractionation from suspensions. This device is based on three-dimensional multilayer poly(dimethylsiloxane) microchannels, which can be fabricated by high-yield and low-cost molding and transfer-bonding techniques. By varying the dimensions of the microchannels in each layer, particles in a suspension can be fractionated into specific layers based on their sizes. Particle separation is successfully achieved in sorting polystyrene microbeads of 1, 10, and 45μm in diameter into different layers. The yield and selectivity of particle separation can be controlled by device geometries such as channel width and length. This novel continuous-flow particle filtration and separation device is expected to find applications in micrototal analysis systems due to its simple fabrication steps, low cost, and capability of particle separation in a deterministic fashion.

1.
D.
Huh
,
W.
Gu
,
Y.
Kamotani
,
J. B.
Grotberg
, and
S.
Takayama
,
Physiol. Meas
26
,
R73
(
2005
).
2.
J. C. T.
Eijkel
and
A.
van den Berg
,
Electrophoresis
27
,
677
(
2006
).
3.
J. C. T.
Eijkel
and
A.
van den Berg
,
Lab Chip
6
,
19
(
2006
).
5.
T.
Kulrattanarak
,
R. G. M.
van der Sman
,
C. G. P. H.
Schroën
, and
R. M.
Boom
,
Adv. Colloid Interface Sci.
142
,
53
(
2008
).
6.
A.
Han
,
K.-H.
Han
, and
A. B.
Frazier
,
J. Semicond. Technol. Sci.
5
,
1
(
2005
).
7.
C.-F.
Chou
,
O.
Bakajin
,
S. W. P.
Turner
,
T. A. J.
Duke
,
S. S.
Chan
,
E. C.
Cox
,
H. G.
Craighead
, and
R. H.
Austin
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
13762
(
1999
).
8.
S.
Matthias
and
F.
Muller
,
Nature (London)
424
,
53
(
2003
).
9.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
,
Science
304
,
987
(
2004
).
10.
D. W.
Inglis
,
J. A.
Davis
,
R. H.
Austin
, and
J. C.
Sturm
,
Lab Chip
6
,
655
(
2006
).
11.
M.
Yamada
,
M.
Nakashima
, and
M.
Seki
,
Anal. Chem.
76
,
5465
(
2004
).
12.
M.
Yamada
and
M.
Seki
,
Lab Chip
5
,
1233
(
2005
).
13.
M.
Yamada
and
M.
Seki
,
Anal. Chem.
78
,
1357
(
2006
).
14.
A.
Bhagat
,
S.
Kuntaegowdanahalli
, and
I.
Papautsky
,
Microfluid. Nanofluid.
7
,
217
(
2009
).
15.
J. A.
Davis
,
D. W.
Inglis
,
K. J.
Morton
,
D. A.
Lawrence
,
L. R.
Huang
,
S. Y.
Chou
,
J. C.
Sturm
, and
R. H.
Austin
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
14779
(
2006
).
16.
D.
Huh
,
J. H.
Bahng
,
Y.
Ling
,
H.-H.
Wei
,
O. D.
Kripfgans
,
J. B.
Fowlkes
,
J. B.
Grotberg
, and
S.
Takayama
,
Anal. Chem.
79
,
1369
(
2007
).
17.
K. S.
Kim
and
J. K.
Park
,
Lab Chip
5
,
657
(
2005
).
18.
S.
Choi
and
J. K.
Park
,
Lab Chip
5
,
1161
(
2005
).
19.
T.
Muller
,
A.
Pfennig
,
P.
Klein
,
G.
Gradl
,
M.
Jager
, and
T.
Schnelle
,
IEEE Eng. Med. Biol. Mag.
22
,
51
(
2003
).
20.
T.
Laurell
,
F.
Petersson
, and
A.
Nilsson
,
Chem. Soc. Rev.
36
,
492
(
2007
).
21.
K.
Ladavac
,
K.
Kasza
, and
D. G.
Grier
,
Phys. Rev. E
70
,
010901
(
2004
).
22.
H.
Park
,
H.
Li
, and
X.
Cheng
,
J. Microelectromech. Syst.
25
,
2325
(
2007
).
23.
B. H.
Jo
,
L. M.
Van Lerberghe
,
K. M.
Motsegood
, and
D. J.
Beebe
,
J. Microelectromech. Syst.
9
,
76
(
2000
).
You do not currently have access to this content.